Physics, asked by aankitacable, 5 months ago

5 litres of kerosene oil is found to weigh 4.40 kg.
Find the density of kerosene oil in
(a) CGS system,
(b) SI system.​

Answers

Answered by lahari60
1

Answer:

density=mass/volume

=4.4/1

=4.4 kg/l

Answered by aryan073
24

Given :

• Number of litres of kerosene oil =5litres

• Weigh=4.40kg

________________________________________

To Find :

• The density of kerosene oil in

(a) CGS system

(b) SI system

________________________________________

Formula :

As we know that,

 \red \bigstar \sf \: 1 \: litres = 1 \times 1000 {cm}^{3}

 \\  \red \bigstar \sf \: 1kg = 1000g

  \\ \red \bigstar \sf \: density =  \frac{mass}{volume}

________________________________________

Solution :

Given volume of kerosene oil =\sf{5litres \: \: }

Volume of kerosene oil =\sf{5 \times 1000cm^{3}}

•Mass=4.40kg=\sf{4.40 \times 1000g}

Mass=\sf{4.40 \times 1000g}

  \\ \bf  \mapsto density =  \frac{mass}{volume}

(a) In CGS system,

 \\  \implies \sf \: density =  \frac{mass}{volume}  \\  \\  \implies \sf \: density =  \frac{4.40 \times 1000 \: g}{5 \times 1000 {cm}^{3} }  \\   \\  \implies \sf \: density =  \frac{4.40}{5}  \frac{g}{ {cm}^{3} }  \\  \\  \implies \sf \: density = 0.88g {cm}^{ - 3}  \\  \\  \implies \boxed{ \sf{density = 0.88g {cm}^{ - 3} }}

(b) In SI system,

  \\  \implies \sf \: density =  \frac{mass}{volume}  \\  \\  \implies \sf \: density =  \frac{0.88}{1000}  \times 100 \times 100 \times 100 \\  \\  \\  \implies \sf \: density = 880kg  {m}^{ - 3}  \\  \\  \implies \boxed{ \sf{density = 880kg {m}^{ - 3} }}

________________________________________

More formulas :

➡ For Finding pressure of an object we use ,

 \red \bigstar \boxed{ \sf{pressure =  \frac{normal \: force}{area} }}

➡ For Finding force of an object or a body we use,

 \\  \red \bigstar \boxed{ \sf{force = mass \times acceleration}}

➡ For Finding power of an object we use,

  \red \bigstar \boxed{ \sf{power =  \frac{energy}{time} }}

➡ For Finding Intensity of an body or a object we use,

 \red \bigstar \boxed{ \sf{intensity =  \frac{energy}{area \times time} }}

➡ For finding the value of \sf{\omega} , we use

\\ \red\bigstar\boxed{\sf{\omega=\dfrac{2 \pi}{t}}}

Similar questions