Math, asked by sonali25292725, 10 months ago

{5^(n+2)-5^(n+1)}/{5^(n+3)​

Answers

Answered by Darkrai14
3

\rm \dfrac{5^{n+2}-5^{n+1}}{5^{n+3}}

_________________________________

\rm \implies\dfrac{5^{n+2}-5^{n+1}}{5^{n+3}}

\rm \implies\dfrac{5^{n} \times 5^2-5^{n} \times 5}{5^{n} \times 5^3}\qquad\qquad ...[ since, \ a^{m+n} = a^m \times a^n]

\rm Let \ 5^n = a

\rm \implies\dfrac{a \times 5^2-a \times 5}{a \times 5^3}

\rm \implies\dfrac{a \times 25-a \times 5}{a \times 125}

\rm \implies\dfrac{25a-5a}{125a}

\rm \implies\dfrac{20a}{125a}

\rm \implies\dfrac{4a}{25a}

a will get cancelled.

\rm \implies\dfrac{4}{25}

Answer:- 4/25

Hope it helps...

Similar questions