Math, asked by Trool769, 1 day ago

5 numbers have a mean of 4, a range of 6, mode of 2 and median of 3. What could the numbers be? ​

Answers

Answered by ItzBrainlyLords
2

 \large \sf \star \:  \underline{ \underline{ \bold{solution : }}} \\

Given :

  • Mean = 4
  • Mode = 2
  • Median = 3
  • Range = 6

 \\  \large \tt \mapsto \: mean =  \frac{a + b + c + d + e}{5}  = 4 \\ \\   \\  \large \implies \tt \: a + b + c + d + e = 5 \times 4\\   \\  \large \implies \tt \: a + b + c + d + e = 20

Mode = most frequently occurring value

= 2

Let,

  • a = 2
  • b = 2

 \\   \boxed{ \rm\leadsto \:  range = highest \:  \: observation - lowest\:  \: observation} \\

  • Highest observation = x

Range = 6

 \\  \large \tt \implies \: 6 = x - 2 \\  \\  \large \tt \implies \: x = 6 + 2 \\  \\  \large \tt \therefore \: x = 8 \\

 \\  \large \tt \: median =  \frac{n + 1}{2}  \: term \\  \\  \\  \large \implies \tt \: median =  \frac{6}{2}  = 3 \\

3rd term = 3

Now,

  • a = 2
  • b = 2
  • c = 3
  • d = 8
  • e = ?

  \\  \large \implies \tt \: a + b + c + d + e = 20\\   \\  \large \implies \tt \: 2 + 2 + 3 + 8+ e = 20 \\  \\  \large \tt \implies \: 15 + e = 20 \\  \\  \large \tt \therefore \: e = 5 \\

So, the numbers could be :

2,2,3,8,5

_____________________________________________

 \\  \large \sf \star \:  \underline{ \underline{ \bold{formulas : }}} \\

 \\ \sf \: mean =  \frac{sum \:  \: of \:  \: all \:  \: observations}{number \:  \: of \:  \: observations}  \\   \\ \\  \sf median =  \left( \frac{n}{2}   + 1\right )^{th} \:  \: term \\  \\  \\ \sf \: range = highest \:  \: obs. - lowest \:  \: obs. \\  \\  \sf \: mode = most \:  \: frequently \:  \: occuring \\

Similar questions