Math, asked by deep12334, 11 months ago

5. On what sum of money will the compound
interest for 2 years at 5 per cent per annum
amount to rupees
768.75 ? In book answer is rupees 7,500​

Answers

Answered by BrainlyConqueror0901
19

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Principal=7,500\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given:}} \\  \tt:  \implies Compound \: Interest(C.I) = 768.75 \: rupees \\  \\  \tt:  \implies Time(t) = 2 \: years \\  \\  \tt:  \implies  Rate\% = 5\% \\  \\ \red{ \underline \bold{To \: Find:}} \\  \tt:  \implies Principal(p) =?

• According to given question :

 \bold{As \: we \: know\: that} \\  \tt:   \implies C.I= A- p \\  \\  \tt:  \implies 768.75 = A - p \\  \\  \tt : \implies A = 768.75 + p \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies A= p(1 +  \frac{r}{100} )^{t}  \\  \\  \tt:  \implies 768.75 + p  = (1 +  \frac{5}{100} ) ^{2}  \\  \\  \tt:  \implies  \frac{768.75 +p }{p}  = (1 + 0.05)^{2}  \\  \\  \tt:  \implies 768.75 + p= p \times (1.05)^{2}  \\  \\  \tt:  \implies 768.75 = 1.1025p - p \\  \\  \tt: \implies 768.75 =0.1025p\\  \\  \tt:   \implies p =  \frac{768.75}{0.1025}  \\  \\   \green{\tt: \implies p = 7,500 \: rupees}

Answered by Anonymous
37

[

\huge{\mathtt{Solution}}

\bold{\mathtt{Given}}

  • Rate = 5%
  • Time = 2 years
  • Interest = 768.75

\bold{\mathtt{Formula}}

 \mathtt{ \boxed{p( {1 +  \frac{r}{100}) }^{time}  - p} }\\

768.75 = x(( {1 +  \frac{5}{100}) }^{2}  - 1) \\

⟹ Here we have taken principal as x .

768.75 = x( \frac{105}{100} . \frac{105}{100}  - 1) \\

768.75 = x (\frac{21}{20}  \times  \frac{21}{20}  - 1) \\

768.75 = x( \frac{441}{400}  - 1) \\

768.75 = x( \frac{441 - 400}{400} ) \\

768.75 = x( \frac{41}{400} ) \\

768.75 \times 400 = 41x \\

 \frac{307500}{41}  = x \\

 \boxed{x = 7500} \\

So the principal amount will be Rs 7500

Similar questions