5. Prove : tan²0 + cot²0 + 2 = sec²0.cosec²0.
Answers
Step-by-step explanation:
To prove ----->
tan²θ + Cot²θ + 2 = Sec²θ Cosec²θ
Proof----->
LHS= tan²θ + Cot²θ + 2
Multiplying and dividing by tanθ in third term , we get,
= ( tanθ )² + ( Cotθ )² + 2 tanθ ( 1 / tanθ )
We know that , Cotθ = 1 / tanθ , applying it we get,
= ( tanθ )² + ( Cotθ )² + 2 tanθ Cotθ
We know that,
a² + b² + 2ab = ( a + b )² , applying it , we get,
= ( tanθ + Cotθ )²
We know that,
tanθ = Sinθ / Cosθ , Cotθ = Cosθ / Sinθ , applying it we get,
= { ( Sinθ / Cosθ ) + ( Cosθ / Sinθ ) }²
= { ( Sin²θ + Cos²θ ) / Sinθ Cosθ }²
We know that, Sin²θ + Cos²θ = 1 , applying it we get,
= ( 1 / Sinθ Cosθ )²
= 1 / Sin²θ Cos²θ
= ( 1 / Sin²θ ) ( 1 / Cos²θ )
We know that ,
1 / Sinθ = Cosecθ , 1 / Cosθ = Secθ , applying it , we get,
= Cosec²θ Sec²θ = RHS