Math, asked by pujitharao000, 8 months ago


5. Prove that a/bc + cosA/a = b/ca

+cos B / b = c/ab +Cos C /c​

Answers

Answered by madeducators2
13

Given:

We are asked to prove that

\frac{a}{bc}+\frac{cosA}{a}=\frac{b}{ca}+\frac{cosB}{b}=\frac{c}{ab}     +\frac{cosC}{c}

Solution:

Before solving let us recall the formulae,

cosA=\frac{b^{2} +c^{2} -a^{2} }{2bc}

cosB=\frac{c^{2} +a^{2} -b^{2} }{2ac}

cosC=\frac{a^{2} +b^{2} -c^{2} }{2ab}

(i)  \frac{a}{bc}+\frac{cosA}{a}=\frac{a}{bc}+\frac{b^{2} +c^{2} -a^{2} }{2abc}  =  \frac{2a^{2} +b^{2} +c^{2} -a^{2} }{2abc}  =  \frac{a^{2} +b^{2} +c^{2}}{2abc}     _ _ _ (1)

Now,  

\frac{a^{2} +b^{2} +c^{2}}{2abc}   =   \frac{a^{2} +2b^{2}-b^{2}  +c^{2}}{2abc}   =  \frac{a^{2} +c^{2}  -b^{2}}{2abc}+\frac{2b^{2} }{2abc}  =   \frac{a^{2} +c^{2}  -b^{2}}{2abc}+\frac{b }{ac}  = \frac{cosB}{b}+\frac{b}{ca}

\frac{a^{2} +b^{2} +c^{2}}{2abc}   =   \frac{cosB}{b}+\frac{b}{ca}  _ _ _(2)

Similarly,

\frac{a^{2} +b^{2} +c^{2}}{2abc}   =    \frac{a^{2} +b^{2}  +2c^{2}-c^{2} }{2abc}  =   \frac{a^{2} +b^{2}  -c^{2}}{2abc}+\frac{2c^{2} }{2abc}  =      \frac{a^{2} +b^{2}  -c^{2}}{2abc}+\frac{c }{ab}  =  \frac{cosC}{c}+\frac{c}{ba}

\frac{a^{2} +b^{2} +c^{2}}{2abc}   =     c_ _ _(3)

Now from equations  (1) , (2) and (3) we can write

\frac{a^{2} +b^{2} +c^{2}}{2abc}  =   \frac{cosA}{a}+\frac{a}{bc}    =   \frac{cosB}{b}+\frac{b}{ca}  =   \frac{cosB}{b}+\frac{b}{ca}

  \frac{cosA}{a}+\frac{a}{bc}    =   \frac{cosB}{b}+\frac{b}{ca}  =   \frac{cosB}{b}+\frac{b}{ca}

Hence Proved.

Answered by keerthanatumma19
5

Answer:

hope it helps you and don't forget to follow mè

Attachments:
Similar questions