Math, asked by mrudula2784, 1 year ago

5.Prove that :
sin 19° + cos 11°÷
cos 19°- sin 11°=√3​

Answers

Answered by amitnrw
6

Given : sin 19° + cos 11°÷  cos 19°- sin 11°=√3​

To Find :  Prove

Solution:

Use Sin(90° - x) = Cosx

Cos(90° - x) = Sinx

SinA + SinB = 2Sin((A + B)/2) Cos((A- B)/2)

SinA - SinB = 2Sin((A - B)/2) Cos((A+ B)/2)

(sin 19° + cos 11°)/(cos 19°- sin 11°)

Numerator :

sin 19° + cos 11°

= Sin19° + Sin79°

= 2Sin((19°+ 79°)/2)(Cos(19° - 79°)/2)

= 2Sin(49°)Cos(-30°)

=2 Sin(49°)Cos(30°)

= 2Sin(49°)(√3/2)

=√3 Sin(49°)

Denominator

cos 19°- sin 11°

=Sin71° - Sin11°

= 2Sin((71°  - 11°)/2)Cos((71° + 11°)/2)

= 2Sin30°Cos41°

= 2(1/2)Cos41°

= Cos41°

= Sin49°

LHS  =

Numerator/ Denominator

= √3 Sin(49°) / Sin49°

=√3

= RHS

QED

Hence Proved

sin 19° + cos 11°÷  cos 19°- sin 11°=√3​  

Learn More:

If cos 0 + sin 0 = √2 cos 0, show that cos 0- sin 0 = √2 sin 0.(CBSE ...

https://brainly.in/question/10256585

Answered by pulakmath007
5

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \sin  {19}^{ \circ} +  \cos  {11}^{ \circ}  }{ \cos {19}^{ \circ}  -   \sin  {11}^{ \circ} } =  \sqrt{3}  }

PROOF

LHS

 =  \displaystyle \sf{ \frac{ \sin  {19}^{ \circ} +  \cos  {11}^{ \circ}  }{ \cos {19}^{ \circ}  -   \sin  {11}^{ \circ} }   }

 =  \displaystyle \sf{ \frac{ \sin  {19}^{ \circ} +  \cos ( {90}^{ \circ}  -  {79}^{ \circ})  }{ \cos {19}^{ \circ}  -   \sin  ( {90}^{ \circ}  -  {79}^{ \circ})  }   }

 =  \displaystyle \sf{ \frac{ \sin  {19}^{ \circ} +  \sin  {79}^{ \circ}  }{ \cos {19}^{ \circ}  -   \cos  {79}^{ \circ} }   }

 =  \displaystyle \sf{ \frac{ 2\sin  \big( \frac{{19}^{ \circ}  + {79}^{ \circ} }{2}  \big)  \cos \big( \frac{{19}^{ \circ}   -  {79}^{ \circ} }{2}  \big)   }{ 2\sin \big( \frac{{19}^{ \circ}  + {79}^{ \circ} }{2}  \big)     \sin  \big( \frac{{19}^{ \circ}   - {79}^{ \circ} }{2}  \big)  }   }

 =  \displaystyle \sf{ \frac{ 2\sin  {49}^{ \circ}  \cos  {30}^{ \circ}  }{ 2\sin {49}^{ \circ}     \sin  {30}^{ \circ} }   }

 =  \displaystyle \sf{ \frac{\cos  {30}^{ \circ}  }{    \sin  {30}^{ \circ} }   }

= cot 30°

 =  \sqrt{3}

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is

https://brainly.in/question/29883463

2. state which of the following are positive and how?(i) cos 271(ii) sec 73°(iv) cosec 159°sec 199°

https://brainly.in/question/18816913

Similar questions