5.Prove that :
sin 19° + cos 11°÷
cos 19°- sin 11°=√3
Answers
Given : sin 19° + cos 11°÷ cos 19°- sin 11°=√3
To Find : Prove
Solution:
Use Sin(90° - x) = Cosx
Cos(90° - x) = Sinx
SinA + SinB = 2Sin((A + B)/2) Cos((A- B)/2)
SinA - SinB = 2Sin((A - B)/2) Cos((A+ B)/2)
(sin 19° + cos 11°)/(cos 19°- sin 11°)
Numerator :
sin 19° + cos 11°
= Sin19° + Sin79°
= 2Sin((19°+ 79°)/2)(Cos(19° - 79°)/2)
= 2Sin(49°)Cos(-30°)
=2 Sin(49°)Cos(30°)
= 2Sin(49°)(√3/2)
=√3 Sin(49°)
Denominator
cos 19°- sin 11°
=Sin71° - Sin11°
= 2Sin((71° - 11°)/2)Cos((71° + 11°)/2)
= 2Sin30°Cos41°
= 2(1/2)Cos41°
= Cos41°
= Sin49°
LHS =
Numerator/ Denominator
= √3 Sin(49°) / Sin49°
=√3
= RHS
QED
Hence Proved
sin 19° + cos 11°÷ cos 19°- sin 11°=√3
Learn More:
If cos 0 + sin 0 = √2 cos 0, show that cos 0- sin 0 = √2 sin 0.(CBSE ...
https://brainly.in/question/10256585
SOLUTION
TO PROVE
PROOF
LHS
= cot 30°
= RHS
Hence proved
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is
https://brainly.in/question/29883463
2. state which of the following are positive and how?(i) cos 271(ii) sec 73°(iv) cosec 159°sec 199°
https://brainly.in/question/18816913