Math, asked by sandeep09121997, 13 days ago

5
Prove that sinO/1-cotO+cosO/1-tanO=sinO+cosO

Answers

Answered by ItzArchimedes
51

\maltese \;\underline{\textbf{\textsf{\orange{Solution \: :-}}}}

\longrightarrow \small\sf \dfrac{sin\theta}{1-cot\theta} + \dfrac{cos\theta}{1-tan\theta}

\underline{\sf\small Substituting \: :- }

  • \small\cot\theta = \dfrac{\cos\theta}{\sin\theta}

  • \small\tan\theta = \dfrac{\sin\theta}{\cos\theta}

\displaystyle\longrightarrow \small \sf \dfrac{sin\theta}{1-\dfrac{cos\theta}{sin\theta}} + \dfrac{cos\theta}{1-\dfrac{sin\theta}{cos\theta}}

\displaystyle\longrightarrow \small \sf \dfrac{sin\theta}{\dfrac{sin\theta - cos\theta}{sin\theta}} + \dfrac{cos\theta}{\dfrac{cos\theta - sin\theta}{cos\theta}}

\longrightarrow \small \sf \dfrac{sin^2\theta}{sin\theta-cos\theta} + \dfrac{cos^2\theta}{cos\theta - sin\theta}

\longrightarrow \small \sf \dfrac{sin^2\theta}{sin\theta-cos\theta} + \dfrac{cos^2\theta}{-(sin\theta - cos\theta)}

\longrightarrow \small \sf \dfrac{sin^2\theta}{sin\theta-cos\theta} - \dfrac{cos^2\theta}{cos\theta - sin\theta}

\longrightarrow \small \sf \dfrac{sin^2\theta - cos^2\theta}{cos\theta - sin\theta}

\underline{\small\sf Using\: :-}

  •  \small\rm (a^2 - b^2) = (a+b)(a-b)

\longrightarrow \small \sf \dfrac{(sin\theta + cos\theta)\cancel{(sin\theta-cos\theta)}}{\cancel{cos\theta - sin\theta}}

\longrightarrow \small \underline{\boxed{\bf sin\boldsymbol\theta +cos\boldsymbol\theta}}

Answered by MagicalLove
60

Step-by-step explanation:

 \rm  \large \underline{† \:  \:  Question \:  \: †}

 \bf \: Prove  \:  \: that \:  \:  \frac{sin \:  \theta}{1 -  \:  \: cot \:  \theta}  +  \frac{ cos \:  \theta }{1 -  \: tan \:  \theta}  =  \: sin \:  \theta \:  +  \: cos \:  \theta

 \rm \large \underline{† \:  Answer \: †}

 \tt \large \implies{ \frac{sin \:  \theta}{1 -  \:  \: cot \:  \theta}  +  \frac{ cos \:  \theta }{1 -  \: tan \:  \theta} } \\

\tt \large \implies{ \frac{sin \:  \theta}{1 -  \frac{cos \theta}{sin \theta} }  +  \frac{cos \:  \theta}{1 -  \frac{sin \theta}{cos \:  \theta} } } \\

\tt \large \implies{ \frac{ {sin}^{2} \theta }{sin \theta - cos \theta}  +  \frac{ {cos}^{2}  \theta}{cos \theta - sin \theta}}  \\

\tt \large \implies{ \frac{ {sin}^{2} \theta }{sin \theta - cos \theta}  +  \frac{ {cos}^{2}  \theta}{ - ( - cos \theta  + sin \theta)}}  \\

\tt \large \implies \frac{ {sin}^{2}  \theta}{sin \theta \:  -  \: cos \:  \theta}   - \frac{ {cos}^{2}  \theta}{sin \theta \:  -  \: cos \:  \theta}  \\

\tt \large \implies \frac{ {sin}^{2} \theta -  {cos}^{2} \theta  }{sin \theta - cos \theta}  \\

(-b²) = (a+b)(a-b)

\tt \large \implies \frac{(sin \theta \:  +  \: cos \theta) \cancel{(sin \theta - cos \theta)}}{\cancel{(sin \theta - cos \theta)}} \\

 {\bf {\large{ \boxed{ \red{ \frak{ \implies{sin \theta \:  +  \: cos \theta}}}}}}}

° LHS = RHS !!

Hence Proved !!!

#Sanjushri Reddy

Similar questions
Math, 6 days ago