Math, asked by aakashdedha77, 7 months ago


5. Rationalise:
√3+√2/√3-√2​

Answers

Answered by anindyaadhikari13
27

\star\:\:\:\bf\large\underline\blue{Question:-}

  • Rationalize  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

\star\:\:\:\bf\large\underline\blue{Solution:-}

 \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

 \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   +  \sqrt{2} }

 =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }

 =  \frac{3 + 2 + 2 \times  \sqrt{2}  \times  \sqrt{3} }{1}

 = 5 + 2 \sqrt{6}

\star\:\:\:\bf\large\underline\blue{Answer:-}

  • Answer for the problem is  = 5 + 2 \sqrt{6}
Answered by MohakBiswas
4

\bf\large\blue{Question\::-}

  • \text{Rationalise it :-} \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

\bf\large\blue{Solution\::-}

\text{ \underline{Steps for solving}\::-}

  • Step 1: Multiply numerator and denominator by a radical that will get rid of the radical in the denominator.

  • Step 2: Make sure all radicals are simplified.

  • Step 3: Simplify the fraction if needed.

 \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

 = \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   +   \sqrt{2} }

 =  \frac{( { \sqrt{3} })^{2} + ( \sqrt{2} ) ^{2}  + 2 \sqrt{2}  \sqrt{3} }{( \sqrt{3}) {}^{2}  - (  {\sqrt{2}  )}^{2} }

 =  \frac{3 + 2 + 2 \sqrt{3} \sqrt{2}   }{3 - 2}

 = 3 + 2 + 2 \sqrt{3  }  \sqrt{2}

 = 5 + 2 \sqrt{6}

\bf\large\blue{Solution\::-}

  • \text{The rationalized denominator is}  = 5 + 2 \sqrt{6}

_________________________________________

\text\blue{Hope it helps you :-) }❤️

Similar questions