Math, asked by pratyushprakhyatsing, 2 months ago

5. Rationalise the denominator.
1 / (√3) + (√2-1)​

Answers

Answered by mufiahmotors
1

Answer:

Step-by-step explanation:

= 1/√3 - √2 - 1 × √3 + √2 + 1

= √3 + √2 + 1/√3 + √2 + 1

= √3 + √2 + 1/(√3)^2 - (√2)^2 -(1)^2

= √3 + √2 + 1/3-2-1

= √3 + √2 + 1/0

= √3 + √2 + 1 is ur answer.

Step-by-step explanation:

hope u have been understood thanku

Answered by awesomeamritaa497
1

Step-by-step explanation:

\frac{1}{\sqrt{3} +\sqrt{2} -1}

keeping \sqrt{3}+\sqrt{2} as "A" and 1 as "B"

USING, (A-B)(A+B)=A^{2} - B^{2}

\frac{1}{\sqrt{3} +\sqrt{2} -1}   X   \frac{\sqrt{3} +\sqrt{2}+1} \sqrt{3} +\sqrt{2}+1

\frac{\sqrt{3}+\sqrt{2}  }{(\sqrt{3} +\sqrt{2} )^{2} -(1)^{2}  }

\frac{\sqrt{3}+\sqrt{2}  }{[(\sqrt{3} )^{2}+2X\sqrt{6} +(\sqrt{2} ^{2})]-1 } =\frac{\sqrt{3} +\sqrt{2} }{3+2\sqrt{6} +2-1}=\frac{\sqrt{3}+\sqrt{2}  }{4+2\sqrt{6} }

We need to re rationalize it.

\frac{\sqrt{3}+\sqrt{2} }{4+2\sqrt{6} } X\frac{4-2\sqrt{6} }{4-2\sqrt{6} } =\frac{4\sqrt{3}-2\sqrt{18} +4\sqrt{2}-2\sqrt{12} }{(4)^{2}-(2\sqrt{6})^{2}   }=\frac{4\sqrt{3}-2\sqrt{18} +4\sqrt{2}-2\sqrt{12} }{16-144   }=\frac{4\sqrt{3}-2\sqrt{18} +4\sqrt{2}-2\sqrt{12} }{-128   }=

\frac{-4\sqrt{3}+2\sqrt{18} -4\sqrt{2}+2\sqrt{12} }{128   }

This hand typed by me..hope this helps you...if it did mark me as the brainliest...

Similar questions