Math, asked by indianosr, 11 months ago

5 root x + 6 root Y equal to 16, 7 x minus 3 root Y equal to 11​

Answers

Answered by prabjeetsingh6
1

Answer:

x=\cfrac {-5 \pm \sqrt{2153}}{196}

Step-by-step explanation:

Given equations are

5\sqrt{x} + 6\sqrt{y} = 16                         ...(1)

7x-3\sqrt{y}= 11                            ...(2)

From Eqn. (1),

\sqrt{y} = \cfrac{16-5\sqrt{x}}{6}

Submitting value of \sqrt{y} in Eqn. (2), we get

7x-\left( \cfrac{16-5\sqrt{x}}{6} \right) = 11

42x - (16 - 5\sqrt{x}) = 66

42x - 16 + 5\sqrt(x) = 66

42x + 5\sqrt{x} - 16 - 66 = 0

42x + 5\sqrt{x} - 82 = 0                    ...(3)

Let \sqrt{x} = m

Squaring both sides,

x = m^2

Substituting value of x in Eqn. (3), we get

42m^2 + 5m - 82 = 0

Using quadratic formula,

m = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{a^2}

= \cfrac{-5 \pm \sqrt{5^2 - 4(14)(-38)}}{(14)^2}

= \cfrac{-5 \pm \sqrt{25+2128}}{196}

=\cfrac {-5 \pm \sqrt{2153}}{196}

Similar questions