Math, asked by reddyboina143, 11 months ago

5+root3/7+2root3=a-broot3

Answers

Answered by rishu6845
5

Answer:

\boxed{\bold{\blue{a =  \dfrac{29}{27}  \: \:  and \:  \: b =  \dfrac{1}{9}}}}

Step-by-step explanation:

\bold{Given} =  >  \\  \dfrac{5 +  \sqrt{3} }{7 + 2 \sqrt{3} }  = a - b \sqrt{3}

to \: find =   >  \: value \: of \: a \: and \: b

\bold{Concept \: used} =  >  \\ (a + b) \: (a - b) =  {a}^{2}  -  {b}^{2}

\bold{Solution} =  >  \\ a - b \sqrt{3}  =  \dfrac{5 +  \sqrt{3} }{7 +2 \sqrt{3}  }

multiplying \: in \: numerator \\\: and \: denomintor \: by \: conjugate \: of \: denominator

 =  \dfrac{(5 +  \sqrt{3}) \: (7 - 2 \sqrt{3} ) }{(7 + 2 \sqrt{3} ) \: (7 - 2 \sqrt{3} )}

 =  \dfrac{35 - 10 \sqrt{3}  + 7 \sqrt{3} - 6 }{ {(7)}^{2}  -  {(2 \sqrt{3} )}^{2} }

 =  \dfrac{29 - 3 \sqrt{3} }{49 - 12}

 =  \dfrac{29  - 3 \sqrt{3} }{27}

a - b \sqrt{3}  =  \dfrac{29}{27}  -  \dfrac{3 \sqrt{3} }{27}

 =  > a - b \sqrt{3}  =  \dfrac{29}{27}  -  \dfrac{1}{9}  \sqrt{3}

on \: comparing \: both \: sides

a \:  =  \:  \dfrac{29}{27}  \:  \: and \:  \: b \:  =  \:  \dfrac{1}{9}

Similar questions