Math, asked by Diyaranaa1002, 7 months ago

5 Соs 45
Sec 30 + cosec 30​

Answers

Answered by Anonymous
4

Correct question :

  • \blue{\sf\dfrac{cos45^\circ}{sec30^\circ+cosec^\circ}}

To find :

  • Its value

Solution :

  \implies \red{\sf\dfrac{ \dfrac{1}{ \sqrt{2} } }{ \dfrac{2}{ \sqrt{3} + 2 } }  = \dfrac{ \dfrac{1}{ \sqrt{2} } }{ \dfrac{2 + 2 \sqrt{3} }{ \sqrt{3}} }} \\  \\  \\ \implies   \purple{\sf\dfrac{1}{ \sqrt{2} }  \times  \dfrac{ \sqrt{3} }{2 + 2 \sqrt{3} }  =  \dfrac{ \sqrt{3} }{ \sqrt{2} \times 2( \sqrt{3} + 1)  }}  \\   \\ \\ \implies\pink{\sf\dfrac{ \sqrt{3} }{ \sqrt{2} \times 2( \sqrt{3} + 1)  } \times  \dfrac{ \sqrt{3} - 1 }{ \sqrt{3} - 1 }}  \\ \\ \\   \implies  \green{\sf \dfrac{ \sqrt{3}( \sqrt{3} - 1)  }{ \sqrt{2}  \times 2(3 - 1)}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf(since(a  + b)(a   -  b) = (a^{2} - b^{2} ))} \\  \\ \\ \implies \orange{   \sf\dfrac{ \sqrt{3}( \sqrt{3}  - 1) }{4 \sqrt{2}}  \times  \dfrac{ \sqrt{2} }{ \sqrt{2} }}  \\  \\ \\ \implies  \underline{\boxed{\gray{\sf \dfrac{3 \sqrt{2} -  \sqrt{6}  }{8}}}}

Similar questions