Math, asked by ansh959892, 10 months ago

5. Show that (a - b)2, (a? + b2) and (a + b)2 are in AP.
6. Find three numbers in AP whose sum is 15 and produ:​

Answers

Answered by Anonymous
1

\huge\bigstar\sf\red{Answer:}

\sf{t_{1}=(a-b)^{2}=a^{2}+b^{2}-2ab}

\sf{t_{2}=a^{2}+b^{2}}

\sf{t_{3}=(a+b)^{2}=a^{2}+b^{2}+2ab}

\sf{Here,}

\sf{t_{2}-t_{1}=a^{2}+b^{2}-a^{2}-b^{2}+2ab=2ab}

\sf{t_{3}-t_{2}=a^{2}+b^{2}+2ab-a^{2}-b^{2}=2ab}

\sf{Hence, \ t_{2}-t_{1}=t_{3}-t_{2}}

\sf{Hence, \ (a-b)^{2}, (a^{2}+b^{2} \ and \ (a+b)^{2}}

\sf{are \ in \ AP.}

Similar questions