Math, asked by twinklerajesh1234, 3 months ago

5) Show that the OPQRS formed by P(2.1).Q(-1,3). R(-5-3) and S(-2,-5) is a
rectangle​

Answers

Answered by Anonymous
17

Answer:

Given:

  • Points = P(2.1), Q(-1,3), R(-5-3), S(-2,-5)

Find:

  • Prove that it is a rectangle

Solution:

By using distance formula,

 \:  \:  \:  \:  \:  \: { \boxed{ \sf{Distance =  \sqrt{ {( x_{2} -  x_{1} ) }^{2} +  {( y_{2} -  y_{1})  }^{2}  } }}}

{ \sf{PQ =  \sqrt{ {( - 1 - 2)}^{2}  +  {(3 - 1)}^{2} } }} \\  \\ { \sf{PQ =  \sqrt{ {( - 3)}^{2} +  {(2)}^{2}  } }} \\  \\  \sf{PQ =  \sqrt{9 + 4} } \\  \\ { \sf{PQ =  \sqrt{12} }} \\  \\ { \sf{ PQ = 2 \sqrt{3} }}

{ \sf{QR =  \sqrt{ {( - 5 - ( - 1))}^{2}  +  {( - 3 - 3)}^{2} } }} \\  \\ { \sf{QR =  \sqrt{ {( - 4)}^{2}  +  {( - 6)}^{2} } }} \\  \\ { \sf{QR =  \sqrt{16 + 36} }} \\  \\ { \sf{QR =  \sqrt{52} }} \\  \\ { \sf{QR = 2 \sqrt{13} }}

{ \sf{RS =  \sqrt{ {( - 2 - ( - 5))}^{2}  +   { {( - 5 - ( - 3)}^{2} }  } }} \\  \\ { \sf{RS =  \sqrt{ {(3)}^{2}  +  {(2)}^{2} } }} \\  \\ { \sf{RS =  \sqrt{9 + 4} }} \\  \\ { \sf{RS =  \sqrt{12} }} \\  \\ { \sf{RS = 2\sqrt{3} }}

 { \sf{PS =  \sqrt{ {( - 2 - 2)}^{2} +  {( - 5 - 1)}^{2}  } }} \\  \\ { \sf{PS =  \sqrt{ {( - 4)}^{2} +  {( - 6)}^{2}  } }} \\  \\ { \sf{PS =  \sqrt{16 + 36} }} \\  \\ { \sf{PS =  \sqrt{52} }} \\  \\ { \sf{PS = 2 \sqrt{13} }}

Here opposite sides are equal

PQ = RS and QR = PS

{  \sf{PR =  \sqrt{ {( - 5 - 2)}^{2} +  {( - 3 - 1)}^{2}  } }} \\  \\ { \sf{PR =  \sqrt{ {( - 7)}^{2} +  {( - 4)}^{2}  } }} \\  \\ { \sf{PR =  \sqrt{49 + 16} }} \\  \\ { \sf{PR =  \sqrt{65} }}

{  \sf{QS =  \sqrt{ {( - 5 - 3)}^{2}  +  {( - 2 + 1)}^{2} } }} \\  \\ { \sf{QS =  \sqrt{ {( - 8)}^{2} +  {( - 1)}^{2}  } }} \\  \\ { \sf{QS =  \sqrt{64 + 1} }} \\  \\ { \sf{QS =  \sqrt{65} }}

Here diagonals are equal

PR = QR

  • According to rectangle properties, opposite sides are equal and diagonals are equal

Therefore,

  • Given points forms a rectangle
Similar questions