Math, asked by shashijakhar29570, 1 month ago


5. Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. find its area using heron formula​

Answers

Answered by SachinGupta01
7

\bf \underline{ \underline{\maltese\:Given} }

 \sf \Rrightarrow Sides  \: of  \: a  \: triangle \:  are  \: in \:  the \:  ratio  \: of \:  12:17:25

 \sf \Rrightarrow Perimeter  \: of  \: the \:  triangle =  540  \: cm

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \Rrightarrow Area \:  of \:  triangle = \:  ?  \:  \:  \: \rm [By \:  using  \: Heron's   \: formula]

\bf \underline{ \underline{\maltese\:Solution } }

 \sf Let  \: the  \: sides  \: of  \: the  \: triangle \:  be :

 \sf \implies First  \: side  \: (a) = 12x

 \sf \implies Second  \: side \:  (b) = 17x

 \sf \implies Third  \: side \:  (c) = 25x

 \bf \underline{ Now},

 \sf \implies   12x+ 17x+ 25x = 540

 \sf \implies   54x = 540

 \sf \implies   x =  \cancel \dfrac{540}{54}

 \sf \implies   x =  10

 \sf Sides  \: of \:  triangle \:  are :

 \sf \implies First  \: side  \: (a) = 12x =  \bf12 \times 10 = 120 \: cm

 \sf \implies Second  \: side \:  (b) = 17x =  \bf 17 \times 10 = 170 \: cm

 \sf \implies Third  \: side \:  (c) = 25x  =  \bf 25 \times 10 = 250 \: cm

 \bf \underline{ Now},

 \sf Area  \: of \:  \bf \triangle  \sf\:  using  \: Heron's  \: formula :

\underline{\boxed{\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}

\sf \implies s \: = \: \dfrac{a + b + c}{2}

\sf \implies s \: = \: \dfrac{120 + 170 + 250}{2}

\sf \implies s \: = \:  \cancel\dfrac{540}{2}

\sf \implies s \: = \:  270

 \sf \underline{Thus, \:  Semi-perimeter \:  is \:  270  \: cm }

 \bf \underline{Now}, \sf \: area \: of \: triangle :

\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}

\sf{Area = \sqrt{270(270 - 120)(270 - 170)(270 - 250)}}

\sf{Area = \sqrt{270  \: ( 150 \times 100 \times 20)}}

\sf{Area = \sqrt{270   \times 300000}}

\sf{Area = \sqrt{81000000}}

 \sf Rewrite  \: 81000000  \: as  \: 9000^2

\sf{Area = \sqrt{9000 ^{2} }}

\sf{Area = 9000 \: cm^{2}   }

 \underline{ \boxed{ \bf \red{Thus, \:  area  \: of \:  triangle\: is\: 9000  \: cm ^{2}}}}

Answered by vaishu775
3

Given,

  • ratio of sides of triangle is 12:17:25. And, Perimeter of triangle is 540 cm.

Let's consider the sides of triangles a, b and c be 12x, 17x and 25x.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

We know that,

  • Perimeter of a triangle is the sum of its sides. Then,

⠀⠀⠀⠀

\begin{gathered}\qquad\qquad\dashrightarrow\sf 12x + 17x + 25x = 540\\\\\\ \qquad\qquad\dashrightarrow\sf 54x = 540\\\\\\ \qquad\qquad\dashrightarrow\sf x = \cancel{\dfrac{540}{54}}\\\\\\ \qquad\qquad\dashrightarrow\sf {\underline{\boxed{\pmb{\frak{x = 10}}}}}\:\bigstar\\\\\end{gathered}

∴ Sides of triangle will be 120 cm, 170 cm & 250 cm.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

If Perimeter of triangle is 540 cm. Then, Semi-perimeter (s) will be 270 cm.

If Perimeter of triangle is 540 cm. Then, Semi-perimeter (s) will be 270 cm.⠀⠀⠀⠀

\begin{gathered}\bigstar\:{\underline{\sf{Using\:Heron's\:formula\:to\:find\:Area\:of\:\triangle\::}}}\\\\\end{gathered}

\begin{gathered}\bigstar\:{\underline{\boxed{\pmb{\sf{Area_{\:(triangle)} = \sqrt{s\bigg(s - a\bigg)\bigg(s - b\bigg)\bigg(s - c\bigg)}}}}}}\\\\\end{gathered}

\begin{gathered}\dashrightarrow\sf \sqrt{s\bigg(270 - 120\bigg)\bigg(270 - 170\bigg)\bigg(270 - 250\bigg)} \\\\\\ \dashrightarrow\sf \sqrt{250 \times 150 \times 100 \times 20}\\\\\\ \dashrightarrow\sf {\underline{\boxed{\pmb{\frak{\pink{9000\:cm^2}}}}}}\:\bigstar\\\\\end{gathered}

\therefore\:{\underline{\sf{Area\:of\:triangle\:is\:{\pmb{9000\:cm^2}}}}}

Similar questions