Math, asked by rkansara139, 4 months ago

5 sin = 3, then find

(i) cos theeta (ii) tan theeeta (iii) sec theeta – cosec theeta​

Answers

Answered by suryakipooja
0

Answer

sin θ=53

secθ−tanθsecθ+tanθ 

Multiplying numerator and denominator by cos θ

secθ−tanθsecθ+tanθ = 1−sinθ1+sinθ

= 1−531+53

Multiplying numerator and denominator by 5,

= 5−35+3

=4

Answered by Anonymous
2

Question :

If 5 sin θ = 3 then find

1) Cos θ

2)Tan θ

3)Sec θ - Cosec θ

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answer :

Given :

\large\orange{5 \: Sin \: θ = 3}

\orange{Sin \: θ = \dfrac{3}{5}=\dfrac{opposite \: to \: \angleθ}{hypotenuse \: to \: \angleθ}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Refer the image now :

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

1)

\orange{Cos \: θ = \dfrac{adjacent \: to \: \angleθ}{hypotenuse \: to \: \angleθ}}

\red{Cos \: θ = \dfrac{4}{5}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

2)

\orange{Tan \: θ = \dfrac{opposite \: to \: \angleθ}{adjacent \: to \: \angleθ}}

\red{Cos \: θ = \dfrac{3}{4}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

3)

Sec θ - Cosec θ

Now,

\orange{sec \: θ = \dfrac{hypotenuse \: to \: \angleθ}{adjacent \: to \: \angleθ}}

\red{sec \: θ = \dfrac{5}{4}}

\orange{Cosec \: θ = \dfrac{hypotenuse \: to \:  \angleθ}{opposite \: to \: \angleθ}}

\red{Cosec \: θ = \dfrac{5}{3}}

Now,

Sec θ - Cosec θ

\orange{\dfrac{5}{4}-\dfrac{5}{3}}

\orange{\dfrac{5×3}{4×3}-\dfrac{5×4}{3×4}}

\orange{\dfrac{15}{12}-\dfrac{20}{12}}

\orange{\dfrac{15-20}{12}}

\red{\dfrac{5}{12}}

[Hope this helps you.../]

Attachments:
Similar questions