Math, asked by shami29, 1 year ago

5 sin square 30 + cos square 45 - 4 x square 30 / 2 sin 30 into cos 30 + tan 45 find the value

Answers

Answered by akhilvinayak03
9

Answer: 5/6(√3+2)

Step-by-step explanation: given below

Pls mark brainliest if you like.

Attachments:
Answered by FelisFelis
6

The required value of the expression is \frac{5\left(2-\sqrt{3}\right)}{6}.

Step-by-step explanation:

Consider the provided information.

\frac{\left(5sin^230+cos^245-4tan^230\right)}{2sin30\:cos30+tan45}

Use the trivial identity:

\sin \left(30^{\circ \:}\right)=\frac{1}{2}, \cos \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}, \tan \left(30^{\circ \:}\right)=\frac{\sqrt{3}}{3}, \cos \left(30^{\circ \:}\right)=\frac{\sqrt{3}}{2}\ and\ \tan \left(45^{\circ \:}\right)=1

\frac{5\sin ^2\left(30^{\circ \:}\right)+\cos ^2\left(45^{\circ \:}\right)-4\tan ^2\left(30^{\circ \:}\right)}{2\sin \left(30^{\circ \:}\right)\cos \left(30^{\circ \:}\right)+\tan \left(45^{\circ \:}\right)}=\frac{5\left(\frac{1}{2}\right)^2+\left(\frac{\sqrt{2}}{2}\right)^2-4\left(\frac{\sqrt{3}}{3}\right)^2}{2\cdot \frac{1}{2}\cdot \frac{\sqrt{3}}{2}+1}

=\frac{\frac{5}{4}+\frac{1}{2}-\frac{4}{3}}{\frac{\sqrt{3}}{2}+1}\\\\=\frac{\frac{5}{12}}{\frac{\sqrt{3}+2}{2}}\\\\=\frac{10}{12\left(2+\sqrt{3}\right)}\\\\=\frac{5}{6\left(2+\sqrt{3}\right)}\\

Rationalize the denominator.

=\frac{5\left(2-\sqrt{3}\right)}{6\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\\\\=\frac{5\left(2-\sqrt{3}\right)}{6}

Hence, the required value of the expression is \frac{5\left(2-\sqrt{3}\right)}{6}.

#Learn more

Sin square(-160)/sin square 70 + sin(180-theta)/sin theta= sec squared 20. How to prove this????​

https://brainly.in/question/11873671

Similar questions