Math, asked by girishnift, 4 months ago

5. Solve
{{2x+6) +(4x - 2) = 9​

Answers

Answered by Sirat4
3

Answer:

The value of x is 5/6

Step-by-step explanation:

(2x+6) +(4x - 2) = 9​

2x + 6 +4x -2 =9

6x +4 = 9

6x = 9 - 4

6x = 5

x = 5/6

Answered by Anonymous
20

Given:

  • equation : ( 2x + 6 )+ (4x - 2) = 9

 \\ \\

To Find:

  • the value of x

 \\ \\

Solution:

◐ here we use the transposition method to find the value of x and simple words we shift the variables and numbers from the left hand side to the right hand side or from the right hand side to the left hand side accordingly as needed

 \\ \\

★let's start ★

 \\ \\

 { : \implies} \sf \: 2x + 6 + 4x - 2 = 9 \\  \\  \\  \\ { : \implies} \sf \: 2x  + 4x+ 6 - 2 = 9 \\  \\  \\  \\ { : \implies} \sf \: 6x + 4 = 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:  \\  \\  \\  \\ { : \implies} \sf6x = 9 - 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \\  \\  \\  \\ { : \implies} \sf \: 6x = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \orange{x =   \frac{5}{6}  \bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\ \\

Verification:

 \\ \\

❍ let's substitute the value of 5/6 in place of x and check weather,

↦ they equal 9 or not

 \\ \\

{ : \implies} \sf\: 2 \times  \frac{5}{6}  + 6 +  4  \times \frac{5}{6}  - 2 \\  \\  \\  \\ { : \implies} \sf \frac{10}{6}  + 6 +  \frac{20}{6}  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \frac{10}{6}  +  \frac{20}{6}  + 6 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \frac{10 + 20}{6}  + 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \cancel\frac{30}{6}  + 4  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \: 5 + 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf{ \pink{ \underline{ \boxed{9}}\bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:

 \\ \\

More to know:

 \large \rm {Transposition \:method}

  • Transposition method isused to solve the linear equations. the two sides of an equation contain both variables and constants.first, we should simplify the equation in simple forms. And transpose the terms that contain variables on LHS and RHS.

 \large \rm {Substitution \:method}

  • The substitution method is used  to solve simultaneous linear equations. in this method, the value of one variable from one equation is substituted in the other equation

 \large \rm {elimination \:method}

  • elimination method is where you actually eliminate one of the variables by adding the two equations

 \\ \\

hope this helps.!

Similar questions