Math, asked by jainpragya11nov, 9 months ago

5. Solve 4x -3y + 17 = 0 and 5x + y + 7 = 0 and hence find the value of n for which y = nx -1

Based on elimination method.​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ value \ of \ n \ is \ -2.}

Given:

\sf{The \ given \ equations \ are:}

\sf{\leadsto{4x-3y+17=0}}

\sf{\leadsto{5x+y+7=0}}

\sf{\leadsto{y=nx-1}}

To find:

\sf{The \ value \ of \ n.}

Solution:

\sf{The \ given \ equations \ are:}

\sf{\leadsto{4x-3y+17=0}}

\sf{\therefore{4x-3y=-17...(1)}}

\sf{\leadsto{5x+y+7=0}}

\sf{\therefore{5x+y=-7...(2)}}

\sf{\leadsto{y=nx-1...(3)}}

\sf{Multiply \ equation (2) \ by \ 3, \ we \ get}

\sf{15x+3y=-21...(4)}

\sf{Add \ equations \ (1) \ and \ (4), \ we \ get}

\sf{4x-3y=-17}

\sf{+}

\sf{15x+3y=-21}

__________________

\sf{19x=-38}

\sf{\therefore{x=\dfrac{-38}{19}}}

\boxed{\sf{\therefore{x=-2}}}

\sf{Substitute \ x=-2 \ in \ equation (2), \ we \ get}

\sf{5(-2)+y=-7}

\sf{\therefore{-10+y=-7}}

\sf{\therefore{y=-7+10}}

\boxed{\sf{\therefore{y=3}}}

\sf{Substitute \ x=-2 \ and \ y=3 \ in \ equation (3)}

\sf{3=n(-2)-1}

\sf{\therefore{3=-2n-1}}

\sf{\therefore{2n=-4}}

\sf{\therefore{n=\dfrac{-4}{2}}}

\boxed{\sf{\therefore{n=-2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ n \ is \ -2.}}}

Similar questions