Math, asked by sharmilasharmavs1530, 7 days ago

5.Solve for x and y: 83x + 85y = 337, 85x + 83y = 335​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm :\longmapsto\:83x + 85y = 337 -  -  - (1)

and

\rm :\longmapsto\:85x + 83y = 335 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:168x + 168y = 672

\rm :\longmapsto\:168(x +y) = 672

\bf\implies \:x + y = 4 -  -  -  - (3)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\: - 2x + 2y = 2

\rm :\longmapsto\: 2(- x + y) = 2

\bf :\longmapsto\: - x + y = 1 -  -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:2y = 5

\bf\implies \:y = \dfrac{5}{2}

On substituting the value of y, we get

\rm :\longmapsto\:x + \dfrac{5}{2}  = 4

\rm :\longmapsto\:x = 4 - \dfrac{5}{2}

\rm :\longmapsto\:x = \dfrac{8 - 5}{2}

\bf\implies \:x = \dfrac{3}{2}

Verification :-

Consider equation (1),

\rm :\longmapsto\:83x + 85y = 337

On substituting the values of x and y, we have

\rm :\longmapsto\:83 \times \dfrac{3}{2}  + 85 \times \dfrac{5}{2}  = 337

\rm :\longmapsto\: \dfrac{249}{2}  + \dfrac{425}{2}  = 337

\rm :\longmapsto\: \dfrac{249 + 425}{2}   = 337

\rm :\longmapsto\: \dfrac{674}{2}   = 337

\rm :\longmapsto\:337 = 337

Hence, Verified

Consider Equation (2),

\rm :\longmapsto\:85x + 83y = 335

On substituting the values of x and y, we get

\rm :\longmapsto\:85 \times \dfrac{3}{2}  + 83 \times \dfrac{5}{2}  = 335

\rm :\longmapsto\: \dfrac{255}{2}  + \dfrac{415}{2}  = 335

\rm :\longmapsto\: \dfrac{255 + 415}{2}   = 335

\rm :\longmapsto\: \dfrac{670}{2}   = 335

\rm :\longmapsto\:335 = 335

Hence, Verified

Similar questions