Math, asked by harshitasharath498, 3 months ago


5) Solve x2 - 2x + 3 = 0 by using the quadratic formula​

Answers

Answered by pavancidde
1

Answer:

1+√2i and 1-√2i

Step-by-step explanation:

x2-2x+3 =0

On solving using quadratic formula, we get the roots of equation as 1+√2i and 1-√2i.

Hope, you get the answer. Please mark my answer as brainliest.

Answered by Anonymous
15

\begin{gathered}\frak{ \pink{Given : }}\sf{\;\;\; x^2 - 2x + 3 = \bf{0}}\end{gathered}

 \\

\begin{gathered}\frak{ \pink{To \: find : }}\sf{\;\;\; Value \: of \: x \: by \: using \: quadratic \: formula.}\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered}\frak{ \pink{Solution : }}\end{gathered}

 \\

Given that : x² - 2x + 3 = 0 and it is a quadratic equation in form of ax² + bx + c = 0.

 \\

Here,

  • a = 1
  • b = - 2
  • c = 3

 \\

Quadratic formula :

  • \underline{\boxed{\bf x =  \dfrac{-b\pm \sqrt{b^2 - 4ac}}{2a} }}

 \\

Now, by substituting values :

  \sf : \implies x =  \dfrac{-(-2)\pm \sqrt{(-2)^2 - 4(1)(3)}}{2(1)}

  \sf : \implies x =  \dfrac{2\pm \sqrt{4 - 4\times 1 \times 3}}{2\times 1}

  \sf : \implies x =  \dfrac{2\pm \sqrt{4 - 12}}{2}

  \sf : \implies x =  \dfrac{2\pm \sqrt{- 8}}{2}

  \sf : \implies x =  \dfrac{2\pm \sqrt{2 \times 2 \times - 2}}{2}

  \sf : \implies x =  \dfrac{2\pm 2 \sqrt{- 2}}{2}

  \sf : \implies x =  \dfrac{\cancel{2}(1\pm \sqrt{- 2})}{\cancel{2}}

  \sf : \implies x =  1\pm\sqrt{- 2}

 \\

\: \:\:\: \: \: \: \:  \: \: \: \: \: \: \: \: \pink{\underline{\boxed{\pmb{\frak{x =   1+\sqrt{- 2} \:or\: x =  1- \sqrt{- 2}}}}}}\:\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

 \underline{ \bf Hence,  \: value  \: of  \: x \: is  \:  \pink{1+\sqrt{- 2} \: or \: 1- \sqrt{- 2}}}.

Similar questions