Math, asked by Kavitaharode82, 3 months ago

5. The area of a rectangle and square are same. If
the side of a square is 80 m and length of
rectangular park is 200 m. Find breadth and
perimeter of the rectangle.​

Answers

Answered by jae3
65

Answer:

area of square = (side )^2

= 80^2

= 6400m^2

area of square = area of rectangle ( ATQ)

6400 = length × breadth

6400 = 200 × breadth

32m = breadth

Perimeter of rectangle = 2( length + breadth)

= 2(200+32)

= 2(232)

= 464 m

Answered by sethrollins13
141

Given :

  • Area of Rectangle and square are same .
  • Side of square is 80 m and length of rectangle is 200 m.

To Find :

  • Breadth and Perimeter of Rectangle .

Solution :

Firstly we will find the Area of Square :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Square=Side\times{Side}}

Putting Values :

\longmapsto\tt{80\times{80}}

\longmapsto\tt\bf{6400\:{m}^{2}}

Now ,

As Given that Area of Square is equal to the area of Rectangle . So ,

\longmapsto\tt{Length=200\:m}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{6400=200\times{b}}

\longmapsto\tt{\cancel\dfrac{6400}{200}=b}

\longmapsto\tt\bf{32\:m=b}

So , The Breadth of Rectangle is 32 m .

Now ,

\longmapsto\tt{Length=200\:m}

\longmapsto\tt{Breadth=32\:m}

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{2(200+32)}

\longmapsto\tt{2(232)}

\longmapsto\tt\bf{464\:m}

So , The Perimeter of Rectangle is 464 m .

Similar questions