Math, asked by sekhongurdev1234, 3 months ago


5. The area of a rectangle is 84 square cm. If its length is 63/8
cm, find its breath.

Answers

Answered by kamlaprajapati1978
1

Answer:

10.66

Step-by-step explanation:

let the breadth= b

area of rectangle= l*b

84 = 63/8*b

84*8/63 = b

10.66= b

Answered by suraj5070
184

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt The \:area\: of\: a \:rectangle\: is \:84\:{cm}^{2} . If\: its\\\tt length\: is \dfrac{63}{8} \:cm, \:Find\: its \:breath.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Area \:of \:rectangle(A) =84\:{cm}^{2}
  •  \sf \bf Length\:of \:rectangle(l) =\dfrac{63}{8}\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Breadth \:of \:rectangle(b)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color {springgreen} \underline {\sf (i) Breadth\:of \:rectangle}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf A=l \times b}}}}}

  •  \sf A=area\:of \:the \:rectangle
  •  \sf l=length \:of \:the \:rectangle
  •  \sf b=breadth\:of \:the \:rectangle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 84=\dfrac{63}{8} \times b

 \sf \bf \implies 84 \times 8 = 63\times b

 \sf \bf \implies 672 = 63b

 \sf \bf \implies b=\dfrac{672}{63}

 \implies{\boxed {\boxed {\color {aqua} {\sf \bf b=10.67\:cm}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\overline {\color {red} {\sf \therefore The \:breath \:of \:the \:rectangle \:is \:10.67\:cm}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Area\:of \:rectangle = l \times b

 \bf Perimeter\:of \:rectangle = 2 \Big(l + b\Big)

 \bf Diagonal\:of \:rectangle = \sqrt{{b}^{2}+{l}^{2}}

Similar questions