Math, asked by rameshnarayana5244, 10 months ago

5. The denominator of a fraction is 4 more than twice the
numerator. When both the numerator and denominator
are decreased by 6, then the denominator becomes 12
times the numerator. Detemine the fraction.​

Answers

Answered by Anonymous
42

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The denominator of a fraction is 4 more than twice the numerator.When both the numerator and denominator are decreased by 6, then the denominator becomes 12 times the numerator.

\bf{\red{\underline{\bf{To\:find\::}}}}

The fraction.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the numerator be r

Let the denominator be m

\boxed{\bf{The\:fraction=\frac{r}{m} }}}}}

A/q

\longrightarrow\sf{m=2r+4..................(1)}

&

The numerator = (r - 6)

The denominator = (m - 6)

\longrightarrow\tt{12(r-6)=(m-6)}\\\\\\\longrightarrow\tt{12r-72=m-6}\\\\\\\longrightarrow\tt{12r-72=2r+4-6\:\:\:\:\:[from(1)]}\\\\\\\longrightarrow\tt{12r-72=2r-2}\\\\\\\longrightarrow\tt{12r-2r=-2+72}\\\\\\\longrightarrow\tt{10r=70}\\\\\\\longrightarrow\tt{r=\cancel{\dfrac{70}{10} }}\\\\\\\longrightarrow\tt{\blue{r=7}}

Putting the value of r in equation (1),we get;

\longrightarrow\tt{m=2(7)+4}\\\\\\\longrightarrow\tt{m=14+4}\\\\\\\longrightarrow\tt{\blue{m=18}}

Thus;

\boxed{\bf{The\:fraction=\frac{r}{m}=\frac{7}{18}  }}}}}


RvChaudharY50: Perfect
Answered by sourya1794
48

{\bold{\huge{\blue{\underline{\pink{A}\purple{ns}\orange{wer}\red{!!!!!...}}}}}}

let numerator be x and denomination be y.

\bf\therefore\: Fraction= \dfrac{Numerator}{Denominator}

\bf\: fraction=\dfrac{x}{y}

When denominator is 4 more than twice the number then,

\bf\:y= 2x+4..................(i)

when both numerator and denominator are decrease by 6 then,

Numerator = x - 6 and denominator = y - 6

when Denominator becomes 12 times the numerator then,

\bf\: 12 (x-6)= y-6

\bf\implies\:12x-72= y-6

\bf\implies\:y=12x-72+6

\bf\implies\:y=12x-66

Substitute equation (i),we get

\bf\implies\:2x+4=12x-66

\bf\implies\:4+66=12x-2x

\bf\implies\:70=10x

\bf\implies\:x=\dfrac{70}{10}

\bf\implies\:x=7

now,

putting equation (i)

\bf\:y= 2x+4

\bf\implies\:y=2\times\:7+4

\bf\implies\:y=18

now we have,

x = 7 and y = 18

\bf\: Fraction= \dfrac{x}{y}

\bf\: Fraction=\dfrac{7}{18}


RvChaudharY50: Nice
Similar questions