5. The digit of the unit place of a two-digit number is 5. If the sum of both the numbers is 5 times, find the number.
Answers
Answer:
GivenUnitsplacedigit=5
Let \: Ten's \:place \:digit = xLetTen
′
splacedigit=x
\pink { Original \: number } = 10x + 5 \:--(1)Originalnumber=10x+5−−(1)
/* According to the problem given,
The number is 5 times the sum of the digits*/
10x + 5 = 5( x + 5 )10x+5=5(x+5)
\implies 10x + 5 = 5x + 25⟹10x+5=5x+25
\implies 10x - 5x = 25 - 5⟹10x−5x=25−5
\implies 5x = 20⟹5x=20
\implies x = \frac{20}{5}⟹x=
5
20
\implies x = 4⟹x=4
/* Put x = 4 in equation (1) , we get */
\begin{gathered} \pink { Original \: number } \\= 10\times 4 + 5\\= 40 + 5 \\= 45 \end{gathered}
Originalnumber
=10×4+5
=40+5
=45
Therefore.,
\pink { Original \: number }\green {= 45 }Originalnumber=45
•••♪
Step-by-step explanation:
atq,
unit place digit = 5
let another digit be x
10x+5=5(x+5)
=> 10x + 5= 5x+25
=> 5x=20
x=4
number=45