Math, asked by daverahul7505, 10 months ago

5. The following data relate to the heights of 10 pairs of fathers and sons:
(175, 173), (172, 172), (167, 171), (168, 171), (172, 173), (171, 170), (174, 173), (176, 175) (169, 170), (170, 173)
The regression equation of height of son on that of father is given by
(a) y = 100+ 5x (b) y = 99.708 +0.405x (c) y = 89.653 +0.582x (d) y = 88.758 +0.562x​

Answers

Answered by rowboatontario
6

The regression equation of height of son on that of the father is Y= 0.44X-96.684.         

Step-by-step explanation:

Let the height of the father be represented by variable X and the height of the son be represented by variable Y.

The following data is represented below for computing regression equation of height of son on that of the father;

Fathers (X)    X-\bar X     (d_x)^{2}     Sons (Y)         Y-\bar Y      (d_y)^{2}        d_x d_y

                      (d_x)                                               (d_y)

 175               3.6         12.96           173              0.9         0.81       3.24

 172               0.6          0.36           172              -0.1         0.01      -0.06

 167              -4.4         19.36           171               -1.1          1.21        4.84

 168              -3.4         11.56            171               -1.1          1.21        3.74

 172               0.6         0.36            173               0.9         0.81      0.54

 171               -0.4         0.16             170             -2.1          4.41       0.84

 174               2.6         6.76             173              0.9         0.81       2.34

 176               4.6         21.16            175              2.9         8.41       13.34

 169              -2.4         5.76             170             -2.1         4.41       5.04

 170               -1.4         1.96              173             0.9        0.81      1.26     

\sum X = 1714               \sum (d_x)^{2}       \sum Y = 1721                      \sum (d_y)^{2}    35.12    

                                = 80.4                                              = 22.9

Firstly, the mean of the height of fathers data is given by;

           Mean, \bar X  =  \frac{\sum X}{n}

                            =  \frac{1714}{10}  = 171.4

And, the mean of the height of sons data is given by;

           Mean, \bar Y  =  \frac{\sum Y}{n}

                            =  \frac{1721}{10}  = 172.1

Now, we have to find the regression coefficients;

  • Y on X regression coefficient is given by;

                     byx=\frac{\sum d_x d_y}{\sum (d_x)^{2} }

                            =  \frac{35.12}{80.4}  = 0.44

Now,  the regression equation of height of son on that of the father (i.e. Y on X) is given by;

  (Y-\bar Y) = byx(X- \bar X)

   (Y-172.1) = 0.44 \times (X-171.4)  

   Y-172.1 = 0.44 X-75.416

   Y= 0.44 X-75.416+172.1

   Y= 0.44X-96.684          

Similar questions