French, asked by Anonymous, 7 months ago

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram. ​Nn

Answers

Answered by Anonymous
1

Explanation:

 \sf  \large \red{\underline{ Question:-}}\\\\

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

Find the measure of each of the angles of the parallelogram.

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \text{ \sf suppose the angles be equal to 3x and 2x.}

 \boxed{ \sf \orange{ we \: have \: ardjacent  \: angles \:  of  \: a  \: parallelogram \:  = 180}}

  \\  \sf \underline{ \green{putting \: all \: values : }}

 \:  \\ \sf \to  \: 3x +  2 x = 180\: \\   \\ \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:5x = 180 \\  \\  \: \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:x \:  =  \frac{180}{5}  \\  \\  \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:x \:  = \cancel{  \frac{180}{5} } \\  \\ \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \purple{x = 36}\\\\

 \sf  \to \: 3x  \\ \sf  \to \: 3 \times 36 \\ \sf  \to \red{108 }\\  \\  \\  \sf \to \: 2x \\  \sf  \to \: 2 \times 36 \\ \sf  \to \orange{72} \\

 \sf  \large\underline{ \blue{verification }}  \huge \dag

  \\  \\ \sf \to 3x + 2x = 180 \\  \\  \sf \to \: 3 \times 36 +2 \times 36 = 180 \\   \\  \sf \to \: 108 + 72 = 180 \\  \\  \sf \to \:180 = 180 \\  \\  \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag

Answered by khushilover3
1

Answer:

∠A = 108°

∠B = 72°

∠C = 108°

∠D = 72°

Step-by-step explanation:

Let,

The angles of the parallelogram :

∠A = 3x

∠D = 2x

We know that,

Adjacent angles of a parallelogram are supplementary

⇒ ∠A + ∠D  = 180°

⇒ 3x + 2x = 180°

⇒ 5x  = 180°

⇒ x = 180° / 5

⇒ x = 36°

Value of 3x :

⇒ 3 (36)

⇒ 108°

Value of 2x :

⇒ 2 (36)

⇒ 72°

Opposite angles are equal in the parallelogram

So,

⇒ ∠A = ∠C = 108°

⇒ ∠D = ∠B = 72°

∴ ∠A = 108°

∠B = 72°

∠C = 108°

∠D = 72°

Similar questions