Math, asked by jenapramod613, 3 months ago

5. The median of the observations arranged in the ascending order as 36, 51, 52, x,
x + 4, 68, 82, 96 is 62.
Then, find the value of x.​

Answers

Answered by SarcasticL0ve
55

Given observation is arranged in ascending order.

》36, 51, 52, x, x + 4, 68, 82, 96.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

\frak{We\:have} \begin{cases}  \sf Median\:of\:data\: = \frak{62}  & \\   \\ \sf Number\: of\: observations,\:(n)\: = \frak{8}& \end{cases}\\\\

¤ Formula to find Median for an ( n = even number ) is,

⠀⠀⠀⠀

\star\:{\underline{\boxed{\frak{\purple{Median = \dfrac{\bigg( \frac{n}{2} \bigg)^{th} + \bigg( \frac{n}{2} + 1 \bigg)^{th}\:observation}{2}}}}}}\\\\

\bf{\dag}\:{\underline{\frak{Now,\:Putting\: Given\: values\: in\: formula,}}}\\

⠀⠀⠀⠀

:\implies\sf 62 = \dfrac{\bigg( \cancel{\frac{8}{2}} \bigg)^{th} + \bigg( \cancel{\frac{8}{2}} + 1 \bigg)^{th}\:observation}{2}\\\\\\ :\implies\sf 62 = \dfrac{4^{th} + 5^{th}\:observation}{2}\\\\\\ :\implies\sf 62 = \dfrac{(x) + (x  + 4)}{2}\\\\\\ :\implies\sf 62 = \dfrac{2x + 4}{2}\\\\\\ :\implies\sf 62 \times 2 = 2x + 4\\\\\\\ :\implies\sf 124 = 2x + 4\\\\\\\ :\implies\sf 124 - 4 = 2x\\\\\\\ :\implies\sf 120 = 2x\\\\\\ :\implies\sf x = \cancel{\dfrac{120}{2}}\\\\\\ :\implies{\underline{\boxed{\frak{\pink{x = 60}}}}}\:\bigstar\\\\

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

\qquad\qquad\qquad\therefore\:{\underline{\sf{The\:value\:of\:x\:is\:{\textsf{\textbf{60}}}.}}}

Answered by BrainlyRish
31

\bf {Given} \begin {cases} \sf{ The  \:observations\: arranged \:in \:the \:}\bf{ascending}\sf{\: order\: as\:\: :\:}\\\\ \sf { \qquad \quad\leadsto 36, \:51,\: 52,}\bf{ \:x\:,\: x\: +\:\: 4}\sf{\:,\: 68\:,\: 82\:, \:96\:. \:} \\\\ \sf{The\:Median \:of\:Given \:Data\:is\:}\bf{62} \end {cases} \\\\

Exigency To Find : The Value of x from the given data .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that ,

⠀⠀⠀⠀⠀36, 51, 52, x , x + 4, 68, 82, 96

Here ,

  • Number of Observations = 8 [ Even Number ]
  • Median of the given data is 62

\dag\:\:\it{ As,\:We\:know\:that\::}\\\\ \sf \qquad \maltese \:\:Formula \:for\:Median\:for\:an\:\bf even\:number : \\\\

\qquad \dag\:\:\Bigg\lgroup \sf{ Median  \:: \dfrac{\bigg( \dfrac{n}{2}\bigg)^{th}\:\: + \:\:\bigg( \dfrac{n}{2} + 1\bigg)^{th} \:\:Observation }{2}\:\:}\Bigg\rgroup \\\\

⠀⠀Here n is the Number of Observations .

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf 62  \:= \dfrac{\bigg( \dfrac{8}{2}\bigg)^{th}\:\: + \:\:\bigg( \dfrac{8}{2} + 1\bigg)^{th} \:\:Observation }{2}\:\:\\\\

\qquad \longmapsto \sf 62  \:= \dfrac{\bigg( \cancel {\dfrac{8}{2}}\bigg)^{th}\:\: + \:\:\bigg( \cancel {\dfrac{8}{2}} + 1\bigg)^{th} \:\:Observation }{2}\:\:\\\\

\qquad \longmapsto \sf 62  \:= \dfrac{\bigg( 4\bigg)^{th}\:\: + \:\:\bigg( 4+ 1\bigg)^{th} \:\:Observation }{2}\:\:\\\\

\qquad \longmapsto \sf 62  \:= \dfrac{\bigg( 4\bigg)^{th}\:\: + \:\:\bigg( 5\bigg)^{th} \:\:Observation }{2}\:\:\\\\

⠀⠀⠀⠀Here ,

\qquad \leadsto \sf  4^{th} \:Observation \: =\:\: x\:\\

\qquad \leadsto \sf  5^{th} \:Observation \: =\:\: x+4\:\\

\qquad \longmapsto \sf 62  \:= \dfrac{ x \:\: + \:x + 4 }{2}\:\:\\\\

\qquad \longmapsto \sf 62  \:= \dfrac{ \:2x + 4 }{2}\:\:\\\\

\qquad \longmapsto \sf 62 \times 2  \:=  \:2x + 4 \:\:\\\\

\qquad \longmapsto \sf 124 \:=  \:2x + 4 \:\:\\\\

\qquad \longmapsto \sf 124 - 4 \:=  \:2x  \:\:\\\\

\qquad \longmapsto \sf 120  \: = \:2x  \:\:\\\\

\qquad \longmapsto \sf \cancel {\dfrac{120}{2}}  \:=  \:x  \:\:\\\\

\qquad \longmapsto \sf 60  \:=  \:x  \:\:\\\\

\qquad \longmapsto \frak{\underline{\purple{\:x = 60 }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Value \:of\:x \:is\:\bf{60}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions