Math, asked by vv332640, 9 months ago

.
5. The radius and height of a right circular cylinder are in the ratio 2:3. Find the curved surface
area if its volume is 1617 cm ​

Answers

Answered by Anonymous
3

Curved surface area of cylinder = 462 cm².

Explanation :

\bf\blue{\underline{\underline{ \mapsto Given\:that :}}}

  • Radius and height of a Cylinder are in the ratio - 2 : 3.
  • Volume of cylinder - 1617 cm².

\bf\green{\underline{\underline{ \mapsto To\:find:}}}

  • Curved surface area of cylinder.

\bf\red{\underline{\underline{ \mapsto Formula\:used:}}}

\boxed{\large{\underline{\rm{\gray{ Curved\:Surface\:Area_{(Cylinder)} =2\pi rh }}}}}

\boxed{\large{\underline{\rm{\gray{ Volume_{(Cylinder)} =\pi r^{2}h }}}}}

Where,

  • r = radius of cylinder.
  • h = height of cylinder.

\bf\orange{\underline{\underline{ \mapsto Let:}}}

The radius and height of the cylinder be :-

  • r = 2x
  • h = 3x

\bf\pink{\underline{\underline{ \mapsto Now:}}}

  • Substitute values in volume formula.

\sf \implies 1617 = \cfrac{22}{7} \times (2x)^{2} \times 3x

\sf \implies 1617 = \cfrac{22 \times 12x^{3}}{7}

\sf \implies x^{3} = \cfrac{\cancel{1617} \times 7}{\cancel{22} \times \cancel{12}}

\sf \implies x^{3} = \cfrac{343}{8}

\sf \implies x = \sqrt[3]{\bigg(\cfrac{343}{8}\bigg)}

\sf \implies x = \cfrac{7}{2}

\sf \implies x = 3.5

Put the value of x.

\sf \rightarrow r = 2x = 2(3.5) = 7

\sf \rightarrow h = 3x = 3(3.5) = 10.5

\bf\red{\underline{\underline{ \mapsto Verification:}}}

Substitute the values of radius and height of cylinder in volume formula.

\sf \implies \cfrac{22}{\cancel{7}} \times \cancel{7} \times 7 \times 10.5

\sf \implies 1617

◼ Since, LHS = RHS.

◼ Hence, it was verified.

Now, we can find out the value of CSA of cylinder.

\sf \implies CSA = 2 \pi rh

  • r = 7 cm.
  • h = 10.5 cm.

\sf \implies CSA = 2 \times \cfrac{22}{\cancel{7}}\times \cancel{7} \times 10.5

\sf \implies CSA  = 462

\underline{\boxed{\rm{\purple{\therefore Curved\:Surface\:Area_{(Cylinder)} = 462\:cm^{2}.}}}}\:\orange{\bigstar}

\bf\green{\underline{\underline{ \mapsto More\:info:}}}

Formulae related to Cylinder :-

\tt\red{\underline{\underline{\blacksquare \: Total\:Surface\:Area_{(Cylinder)} = 2 \pi r(r + h) }}}

\tt\red{\underline{\underline{\blacksquare \: Curved\:Surface\:Area_{(Cylinder)} = 2 \pi rh}}}

\tt\red{\underline{\underline{\blacksquare \: Volume_{(Cylinder)} =  \pi r^{2}h}}}

______________________________________________________

Similar questions