Math, asked by shivyasuri2007, 10 months ago

5 The ratio between the curved surface area and the total surface area of a right circular cylinder is 4:9. Find the ratio between the height and the radius of the cylinder.

Answers

Answered by BrainlyConqueror0901
26

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:Radius=4:5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies ratio \: of \: C.S.A : T.S.A= 4 : 9 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Ratio \: of \:Height : Radius = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{C.S.A\: of \: cylinder}{T.S.A \: of \: cylinder}  =  \frac{4}{9}  \\  \\ \tt:  \implies  \frac{2\pi rh}{2\pi r(h + r)}  =  \frac{4}{9}  \\  \\ \tt:  \implies  \frac{h}{h + r}  =  \frac{4}{9}  \\  \\ \tt:  \implies 9h = 4h + 4r \\  \\ \tt:  \implies 9h - 4h = 4r \\  \\ \tt:  \implies 5h = 4r \\  \\ \tt:  \implies  \frac{h}{r} =  \frac{4}{5}   \\  \\  \green{ \tt:  \implies h : r = 4 : 5} \\  \\   \green{\tt \therefore Ratio \: of \:Height \: and \: Radius \: is \: 4 : 5}

Answered by Saby123
22

QUESTION :

5 The ratio between the curved surface area and the total surface area of a right circular cylinder is 4:9. Find the ratio between the height and the radius of the cylinder.

SOLUTION :

 \begin{lgathered}\bold{As \: we \: know \: that} \\ \tt: \leadsto \frac{C.S.A\: of \: cylinder}{T.S.A \: of \: cylinder} = \dfrac{4}{9} \\ \\ \tt: \mapsto \dfrac{2\pi rh}{2\pi r(h + r)} = \frac{4}{9} \\ \\ \tt: \implies \frac{h}{h + r} = \frac{4}{9} \\ \\ \tt: \implies 9h = 4h + 4r \\ \\ \tt: \implies 9h - 4h = 4r \\ \\ \tt: \implies 5h = 4r \\ \\ \tt: \implies \frac{h}{r} = \frac{4}{5} \\ \\ \green{ \tt: \implies h : r = 4 : 5} \\ \\ \purple{\tt \therefore Ratio \: of \:Height \: and \: Radius \: is \: 4 : 5}\end{lgathered}

Similar questions