Math, asked by neelamsharma21548, 1 day ago

5. The ratio of the length of a square to the length of a rectangle is 1:3.
If length of the rectangle is 45 cm. Find the perimeter of the square.​

Answers

Answered by geetachoudhary955
0

Using Formula

* perimeter of square= 4 x (Side)

* perimeter of rectangle = 2 × ( Length +

width)

Now Let,

• Length of rectangle = L • Side of square = S

A/C to question,

The ratio of the length of a square to the length of a rectangle is 1:3

==> S: L= 1:3

==> S/L = 1/3

==> 3S-L = 0 ---(1)

But, L = 45 cm

==> 3S - 45 = 0

==> 3S = 45

==>S = 45/3

==>S=15

Now, Calculate perimeter of Square

==> perimeter of Square = (Side)²

==> perimeter of Square = 15²

==> perimeter of Square = 225 cm

Hence

Side of Square- 15cm

Side of perimeter-225cm

Answered by ItzUnic0rns
24

\sf{Using~Formula}

\sf{Perimeter~of~Square~=~4~×~(Side)}

\sf{Perimeter~of~Rectangle~=~2~×~(Length~+~width)}

\sf{Now~Let,}

\sf{Length~of~Rectangle~=~L}

\sf{Side~of~Square~=~S}

\sf{The~ratio~of~the~length~of~a~square}

\sf{to~the~length~of~a~rectangle~is~1~:~3}

\sf\huge{~S:~L~=~1~:~3}

\sf\huge\frac{S}{L}={1}{3}

\sf\huge{3S~- ~L~ = ~0 ~~(1)}

\sf{But,~L~=~45~cm}

\sf\huge{3S~-~45~=~0}

\sf\huge{3S~=~45~}

\sf\huge{S=\frac{45}{3}}

\sf\huge{S~=~15}

\sf{Now,~Calculate~Perimeter~of~Square}

\sf{Perimeter~of~Square~=~(Side)^2}

\sf{Perimeter~of~Square ~=~15 ^ 2}

\sf{Perimeter~of~Square~=~225cm}

Similar questions