Math, asked by satyendrapearsonsing, 4 months ago



5. The sum of the digits of a two digit number is 10 and the digit at units place is 2/3rd of the digit
at tens place. Find the number.

Answers

Answered by rashminishad2005
4

Answer:

Let the 10s digit of two digit number be x and 1s digit be y

Hence the number is 10x + y

The number of two digits if a two digit number is 10. It means

x + y = 10…Eq.1

The digit at the unit place is 2/3rd of the digit at the tens place

y = 2/3x

y = 2x/3.. Eq .2

Now substituting the value of y from Eq.. 2 to Eq..1

x + y = 10

x + 2x/3 = 10

(3x + 2x)/3 = 10

Cross multiplication

5x = 30

x = 30/5

x = 6

The 10s digit is 6

Substituting value of x in Eq..2 to drive value of y

y = 2x/3

y = 2 × 6/3

y = 2 × 2

y = 4

The 1s digit is 4

Thus the number is 64.

Answer the number is 64

Step-by-step explanation:

please follow me ✌️

Answered by Anonymous
8

ʟᴇᴛ ᴛʜᴇ ᴛᴡᴏ ᴅɪɢɪᴛ ɴᴜᴍʙᴇʀ ʜᴀᴠᴇ x ᴀs ɪᴛs ᴛᴇɴ's ᴘʟᴀᴄᴇ ᴀɴᴅ ʏ ᴀs ɪᴛs ᴜɴɪᴛ's ᴘʟᴀᴄᴇ sᴏ ᴛʜᴀᴛ ᴛʜᴇ ɴᴜᴍʙᴇʀ ɪs ᴇǫᴜᴀʟ ᴛᴏ \sf\small{10x\: +\: ʏ}. ɪᴛ ɪs ɢɪᴠᴇɴ ᴛʜᴀᴛ :-

\sf\small{x\: +\: y\: = \:10}

⠀ ⠀⠀ ⠀ \sf{\bold{1\:equ.}} \sf\small{Also, \:the \:digit\: at\: unit \:place\:is}\sf\small{  two\:-\: third\: the }\sf\small{digit \:at \:ten's \:place. }

\sf\small{So,\: y \:=}\:\frac{ 2}{3}\: x

⠀ ⠀⠀

⠀ ⠀⠀ ⠀ \sf{\bold{2\:equ.}} \sf\small{Putting \:this \:value \:of\: y\: in\: (1), }

\sf\small{We\: have\:  x\:+} \frac{2}{3}\sf\small{ x \:=\:10   \:or   }\frac{5}{3} \sf\small{x \:= \:10\:\:or \: \: x \:= \:6    }

⠀ ⠀⠀ ⠀ ⠀

\sf\small{Also, \:    y\: =} \frac{2}{3} x

= \frac{2}{3}\sf\small{×\:6 }

= \sf\small{4 }

\sf\small{∴\: x \:= \:6\: and\: y\: = \:4.}

Similar questions