5
The value of 4(sin^30° + cos"60°) - 3(cos^ 45º – sin²90)
Answers
Answered by
1
Step-by-step explanation:
Answer:
Value\: of \: 4(sin^{4}30+cos^{4}60)-3(cos^{2}45-sin^{2}90)Valueof4(sin
4
30+cos
4
60)−3(cos
2
45−sin
2
90)
= 2=2
Explanation:
Value\: of \: 4(sin^{4}30+cos^{4}60)-3(cos^{2}45-sin^{2}90)Valueof4(sin
4
30+cos
4
60)−3(cos
2
45−sin
2
90)
=[4(\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}]-3[\left(\frac{1}{\sqrt{2}}\right)^{2}-1^{2}][4((
2
1
)
4
+(
2
1
)
4
]−3[(
2
1
)
2
−1
2
]
=$$4[\left(\frac{1}{16}\right)+\left(\frac{1}{16}]-3(\frac{1}{2}-1)$$
= $$4\times \frac{2}{16}-3(\frac{(1-2)}{2})$$
= $$\frac{1}{2}-3\left(\frac{-1}{2}\right)$$
$$=\frac{1}{2}+\frac{3}{2}$$
$$=\frac{4}{2}$$
$$= 2$$
Therefore,
$$Value\: of \: 4(sin^{4}30+cos^{4}60)-3(cos^{2}45-sin^{2}90)$$
$$= 2$$
Answered by
3
my dear u want a bottle of beer :) :) :)
just kidding frnd
ANSWER :- IS 2
Attachments:
Similar questions