Math, asked by krishanvenieni1, 1 month ago

5. The zeroes of the polynomial 4/3x² + 5x - 2/3 are​

Answers

Answered by GraceS
4

\sf\huge\bold{Answer:}

Given :

\sf:⟶ \frac{4}{3}  {x}^{2}  + 5x -  \frac{2}{3}  \\

To find :

Zeroes of a given polynomial

Solution :

Step 1 : Take the polynomial = 0

\sf:⟶ \frac{4}{3}  {x}^{2}  + 5x -  \frac{2}{3} =0 \\

Step 2 : Taking LCM

\sf:⟶ \frac{4 {x}^{2} + 15x - 2 }{3}   = 0\\

Step 3 : Taking 3 to opposite side to simplify equation

\sf:⟶ 4 {x}^{2} + 15x - 2  = 0 × 3\\

\sf:⟶ 4 {x}^{2} + 15x - 2  = 0 \\

Step 4 : Using discriminant method to find zeroes

① Compare given equation with general equation to get values of a, b, c

\sf:⟶ 4 {x}^{2} + 15x - 2  = 0 \\

\sf:⟶ a {x}^{2} + bx + c  = 0 \\

a=4

b=15

c= -2

② Find discriminant

\fbox\purple{Formula used}

:⟶ D=b²-4ac

:⟶D=15²-4×4×(-2)

:⟶D=225-16×(-2)

:⟶D=225-(-32)

:⟶D=225+32

:⟶D=257

③ To find zeroes

\fbox\purple{Formula Used}

\sf:⟶x =  \frac{ - b± \sqrt{D} }{2a} \\

\sf:⟶x =  \frac{ - 15 ± \sqrt{257} }{2×4} \\

\sf:⟶x =  \frac{ - 15 ± \sqrt{257} }{8} \\

[NOTE] : 257 is a prime number, so it will remain as √257 in the equation

Hence, zeroes are

\sf\huge:⟶x =  \frac{ - 15 ± \sqrt{257} }{8} \\

i.e.

\huge\purple{:⟶x =  \frac{ - 15 + \sqrt{257} }{8}} and

\huge\purple{:⟶x =  \frac{ - 15 - \sqrt{257} }{8}}

Similar questions