Physics, asked by 007Tanzin, 9 months ago

5. Two electric charges one 15 times as strong as the other, exert a force 2.45×10-2 on each other. When they are placed 10 cm apart in air, find the magnitude of each charge.​

Answers

Answered by Anonymous
13

AnswEr :

From the Question,

  • Electrostatic Force (F) = 2.45 × 10^{-2} N

  • Distance of Separation (r) = 10 cm = 10^{-1} m

If one of the charge is Q,the other charge would be 15 Q

We know that,

 \sf \: F =  \dfrac{1}{4 \pi \epsilon_o}  \times  \dfrac{Qq}{r {}^{2} }

\mathbb{HERE}\begin{cases}\sf{F \longrightarrow Force} \\ \sf{\epsilon_o \longrightarrow Permittivity \ of \ Free \ Space} \\ \sf{Q,q \longrightarrow Charges } \\ \sf{r \longrightarrow Separation \ Distance } \end{cases}

Also,

\sf \dfrac{1}{4 \pi \epsilon_o} = 9 \times 10^9

Substituting the values,we get :

 \sf \longrightarrow \: \: 2.45 \times  {10}^{ - 2}  =  \dfrac{9 \times 10 {}^{9}  \times  {15q} \times q }{(10 {}^{ - 1} ) {}^{2} }  \\  \\  \longrightarrow \:  \sf \: 2.45 \times  {10}^{ - 2}  =  \dfrac{135 {q}^{2}  \times  {10}^{9} }{ {10}^{ - 2} }  \\  \\  \longrightarrow \:  \sf \: 245 \times  {10}^{ - 4}  \times  {10}^{ - 2}  = 135 {q}^{2}  \times  {10}^{9}  \\  \\  \longrightarrow \:  \sf \: 135 {q}^{2}  = 245 \times  {10}^{ - 6}  \times  {10}^{ - 9}  \\  \\   \longrightarrow \sf \: 135 {q}^{2}  = 245 \times  {10}^{ - 15}  \\  \\  \longrightarrow \:  \sf \: q {}^{2}  = 1.81 \times  {10}^{ - 15}  \\  \\  \longrightarrow \:  \sf \: q {}^{2}  = 18.1 \times  {10}^{ - 16}  \\  \\  \longrightarrow \:  \sf \: q =  \sqrt{18.1 \times  {10}^{ - 16} }  \\  \\  \longrightarrow \boxed{ \boxed{ \sf \: q = 4.25 \times  {10}^{ - 8}  \: C}}

According to the Question,

The other charge should be 15Q

Thus,

 \sf \: Q = 15q \\  \\  \implies \:  \sf \: Q = 15 \times 4.25 \times  {10}^{ - 8}  \\  \\  \implies \boxed{ \boxed{\sf \: Q = 63.75 \times  {10}^{ - 8}  \: C}}

The charges are 63.75 × 10^{-8} C and 4.25 × 10^{-8} C


EliteSoul: Great :D
Anonymous: Thank You !
Similar questions