Social Sciences, asked by rahul141414, 9 months ago

5. Use Euclid's division lemma to show that the cube of any positive integer is of the form
9m, 9m+ 1 or 9m+8.​

Answers

Answered by si2343775
0

Answer:

Let a and b be two positive integers, and a>b

a=(b×q)+r where q and r are positive integers and  

0≤r<b

Let b=3 (If 9 is multiplied by 3 a perfect cube number is obtained)  

a=3q+r where 0≤r<3

(i) if r=0,a=3q    (ii) if r=1,a=3q+1      (iii) if r=2,a=3q+2

Consider, cubes of these

Case (i) a=3q

a  

3

=(3q)  

3

=27q  

3

=9(3q  

3

)=9m           where m=3q  

3

 and   'm' is an integer.

Case (ii) a=3q+1

a  

3

=(3q+1)  

3

                [(a+b)  

3

=a  

3

+b  

3

+3a  

2

b+3ab  

2

]

     =27q  

3

+1+27q  

2

+9q=27q  

3

+27q  

2

+9q+1

     =9(3q  

3

+3q  

2

+q)+1=9m+1

where m=3q  

3

+3q  

2

+q and 'm' is an integer.  

Case (iii) a=3q+2

a  

3

=(3q+2)  

3

=27q  

3

+8+54q  

2

+36q

=27q  

3

−54q  

2

+36q+8=9(3q  

3

+6q  

2

+4q)+8  

9m+8, where m=3q  

3

+6q  

2

+4q and m is an integer.

∴ cube of any positive integer is either of the form 9m,9m+1 or 9m+8 for some integer m.

Similar questions