5. Using Heron's formula, find the area of an equilateral
triangle of side x cm.
Answers
⠀⠀⠀⠀⠀⠀
Answer
⠀⠀⠀⠀⠀⠀
Given
- Side of triangle = x cm
⠀⠀⠀⠀⠀⠀
To Calculate
- Area of △ Using Heron's Formula
⠀⠀⠀⠀⠀⠀
Solution
A = x cm, B = x cm, C = x cm
Semi Perimeter = A + B + C / 2
= x + x + x / 2
= 3x / 2
Using Heron's Formula
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
Answer:
Answer
\bf Area = \frac{ \sqrt{3} {x}^{2} }{4} {cm}^{2}Area=43x2cm2
⠀⠀⠀⠀⠀⠀
Given
Side of triangle = x cm
⠀⠀⠀⠀⠀⠀
To Calculate
Area of △ Using Heron's Formula
⠀⠀⠀⠀⠀⠀
Solution
A = x cm, B = x cm, C = x cm
Semi Perimeter = A + B + C / 2
= x + x + x / 2
= 3x / 2
Using Heron's Formula
⠀⠀⠀⠀⠀⠀
\bf Area = \sqrt{s(s - a)(s - b)(s - c)}Area=s(s−a)(s−b)(s−c)
⠀⠀⠀⠀⠀⠀
\bf \implies \sqrt{ \frac{3x}{2}( \frac{3x}{2} - x) ( \frac{3x}{2} - x)( \frac{3x}{2} - x)}⟹23x(23x−x)(23x−x)(23x−x)
⠀⠀⠀⠀⠀⠀
\bf \implies \sqrt{ \frac{3x}{2} \times \frac{1x}{2} \times \frac{1x}{2} \times \frac{1x}{2} }⟹23x×21x×21x×21x
⠀⠀⠀⠀⠀⠀
\bf \implies \sqrt{ \frac{ {3x}^{4} }{16} }⟹163x4
⠀⠀⠀⠀⠀⠀
\bf \implies \frac{ \sqrt{3 {x}^{4} } }{4}⟹43x4
⠀⠀⠀⠀⠀⠀
\bf \implies\frac{ \sqrt{3} {x}^{2} }{4} {cm}^{2}⟹43x2cm2