Math, asked by sushilnkumar, 7 months ago


5. Using Heron's formula, find the area of an equilateral
triangle of side x cm.​


sushilnkumar: hi

Answers

Answered by Anonymous
25

 \bf \huge {\underline {\underline \red{SoLuTiOn}}}

⠀⠀⠀⠀⠀⠀

Answer

 \bf Area = \frac{ \sqrt{3} {x}^{2}  }{4}  {cm}^{2}

⠀⠀⠀⠀⠀⠀

Given

  • Side of triangle = x cm

⠀⠀⠀⠀⠀⠀

To Calculate

  • Area of △ Using Heron's Formula

⠀⠀⠀⠀⠀⠀

Solution

A = x cm, B = x cm, C = x cm

Semi Perimeter = A + B + C / 2

= x + x + x / 2

= 3x / 2

Using Heron's Formula

⠀⠀⠀⠀⠀⠀

 \bf Area =  \sqrt{s(s - a)(s - b)(s - c)}

⠀⠀⠀⠀⠀⠀

 \bf \implies \sqrt{ \frac{3x}{2}( \frac{3x}{2}  - x) ( \frac{3x}{2}  - x)( \frac{3x}{2}  - x)}

⠀⠀⠀⠀⠀⠀

 \bf \implies \sqrt{ \frac{3x}{2}  \times  \frac{1x}{2} \times  \frac{1x}{2} \times  \frac{1x}{2}   }

⠀⠀⠀⠀⠀⠀

 \bf \implies \sqrt{ \frac{ {3x}^{4} }{16} }

⠀⠀⠀⠀⠀⠀

 \bf \implies \frac{ \sqrt{3 {x}^{4} } }{4}

⠀⠀⠀⠀⠀⠀

 \bf \implies\frac{ \sqrt{3} {x}^{2}  }{4}  {cm}^{2}

Answered by Anonymous
3

Answer:

Answer

\bf Area = \frac{ \sqrt{3} {x}^{2} }{4} {cm}^{2}Area=43x2cm2

⠀⠀⠀⠀⠀⠀

Given

Side of triangle = x cm

⠀⠀⠀⠀⠀⠀

To Calculate

Area of △ Using Heron's Formula

⠀⠀⠀⠀⠀⠀

Solution

A = x cm, B = x cm, C = x cm

Semi Perimeter = A + B + C / 2

= x + x + x / 2

= 3x / 2

Using Heron's Formula

⠀⠀⠀⠀⠀⠀

\bf Area = \sqrt{s(s - a)(s - b)(s - c)}Area=s(s−a)(s−b)(s−c)

⠀⠀⠀⠀⠀⠀

\bf \implies \sqrt{ \frac{3x}{2}( \frac{3x}{2} - x) ( \frac{3x}{2} - x)( \frac{3x}{2} - x)}⟹23x(23x−x)(23x−x)(23x−x)

⠀⠀⠀⠀⠀⠀

\bf \implies \sqrt{ \frac{3x}{2} \times \frac{1x}{2} \times \frac{1x}{2} \times \frac{1x}{2} }⟹23x×21x×21x×21x

⠀⠀⠀⠀⠀⠀

\bf \implies \sqrt{ \frac{ {3x}^{4} }{16} }⟹163x4

⠀⠀⠀⠀⠀⠀

\bf \implies \frac{ \sqrt{3 {x}^{4} } }{4}⟹43x4

⠀⠀⠀⠀⠀⠀

\bf \implies\frac{ \sqrt{3} {x}^{2} }{4} {cm}^{2}⟹43x2cm2

Similar questions