Math, asked by summykri13july, 5 months ago

5. Using integration determine the area of the region bounded by y = sinx
between x=0 and x=2π​

Answers

Answered by shadowsabers03
5

Let's check condition for satisfying \displaystyle\sf {\sin x\leq0.}

This implies \displaystyle\sf {x} belongs to 3rd or 4th quadrant.

\displaystyle\sf{\Longrightarrow x\in [(2n-1)\pi,\ 2n\pi]}

where \displaystyle\sf {n\in\mathbb{Z}.}

For \displaystyle\sf {x\in[0,\ 2\pi],}

\displaystyle\sf{\longrightarrow\sin x\leq0\quad\Longrightarrow\quad x\in [\pi,\ 2\pi]}

Therefore, area bounded by \displaystyle\sf {y=\sin x} with x axis,

\displaystyle\sf{\longrightarrow A=\int\limits_0^{\pi}\sin x\ dx-\int\limits_{\pi}^{2\pi}\sin x\ dx}

\displaystyle\sf{\longrightarrow A=-\big[\cos x\big]_0^{\pi}+\big[\cos x\big]_{\pi}^{2\pi}}

\displaystyle\sf{\longrightarrow A=-(-1-1)+(1+1)}

\displaystyle\sf {\longrightarrow\underline {\underline {A=4}}}

Hence 4 is the answer.

Similar questions