Math, asked by sheluhigh123, 5 months ago



5.
Volume of a cone is 6280 cubic cm and base radius of the cone is 30 cm. Find its
perpendicular height. (It = 3.14)​

Answers

Answered by archie77
2

Answer:  6.66 cm

Step-by-step explanation:

6280=1/3* 3.14* (30)^2

18840=3.14 *900h

h=18840/ 3.14*900

h=6.66

Answered by varadad25
8

Answer:

The height of the cone is approximately 6.67 cm.

Step-by-step-explanation:

We have given that,

The volume of the cone is 6280 cm³.

The radius of its base is 30 cm.

We have to find the height of the cone.

Now, we know that,

\displaystyle{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h}\sf\:\quad\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:6280\:=\:\dfrac{1}{3}\:\times\:3.14\:\times\:(\:30\:)^2\:\times\:h}

\displaystyle{\implies\sf\:6280\:=\:\dfrac{1}{3}\:\times\:3.14\:\times\:30\:\times\:30\:\times\:h}

\displaystyle{\implies\sf\:h\:=\:\dfrac{6280\:\times\:3}{3.14\:\times\:30\:\times\:30}}

\displaystyle{\implies\sf\:h\:=\:\dfrac{6280\:\times\:3}{3.14\:\times\:100\:\times\:3\:\times\:3}}

\displaystyle{\implies\sf\:h\:=\:\dfrac{6280\:\times\:\cancel{3}}{314\:\times\:3\:\times\:\cancel{3}}}

\displaystyle{\implies\sf\:h\:=\:\dfrac{\cancel{6280}}{\cancel{314}\:\times\:3}}

\displaystyle{\implies\sf\:h\:=\:\cancel{\dfrac{20}{3}}}

\displaystyle{\implies\sf\:h\:=\:6.666}

\displaystyle{\implies\underline{\boxed{\red{\sf\:h\:\approx\:6.67\:cm}}}}

∴ The height of the cone is approximately 6.67 cm.

Similar questions