Math, asked by parthasarathidash19, 6 months ago

5. What length of a solid cylinder 2 cm in diameter must be taken to recasting
hollow cylinder of length 16 cm, external diameter 20 cm and thickness 2.5mm​

Answers

Answered by EliteZeal
93

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Diameter of solid cylinder = 2 cm

 \:\:

  • Length of hollow cylinder = 16 cm

 \:\:

  • External diameter = 20 cm

 \:\:

  • Thickness = 2.5 mm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Length of a solid cylinder must be taken to recasting hollow cylinder

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the height of solid cylinder be "h"

 \:\:

 \underline{\bold{\texttt{Volume of cylinder :}}}

 \:\:

➠ πr²h

 \:\:

  • r =  \sf \dfrac { Diameter } { 2 } = \dfrac { 2 } { 2 } = 1

  • h = height of solid cylinder

 \:\:

➜ π × 1² × h

 \:\:

➜ πh -------- (1)

 \:\:

 \underline{\bold{\texttt{Volume of hollow cylinder :}}}

 \:\:

 \sf \pi H(R_1^2 – R_2^2 ) ----- (2)

 \:\:

  •  \sf R_1 = Outer radius

  •  \sf R_2 = Inner radius

  • H = length of hollow cylinder

 \:\:

Thickness = 2.5 mm = 0.25 cm

 \:\:

  • Inner radius = 10 - 0.25 = 9.75 =  \sf R_2

  • Length of hollow cylinder = 16 = H

  • Outer radius =  \sf \dfrac { 20 } { 2 } = 10 =  \sf R_1

 \:\:

 \underline{\bold{\texttt{Putting these values in (2) }}}

 \:\:

 \sf \pi H(R_1^2 – R_2^2 )

 \:\:

 \sf \pi 16(10^2 – 9.75^2 )

 \:\:

 \sf \pi 16(100 – 95.0625 )

 \:\:

 \sf \pi 16(4.9375) -------- (3)

 \:\:

As solid cylinder is just recaste into hollow cylinder hence volume of solid cylinder will be equal to volume of hollow cylinder

 \:\:

 \underline{\bold{\texttt{Thus , (1) = (3)}}}

 \:\:

➜ π × h = 16 × π × 4.9375

 \:\:

➜ h = 16 × 4.9375

 \:\:

➨ h = 79 cm

 \:\:

  • Hence the height of solid cylinder recasted into hollow cylinder is 79 cm

 \:\:

Additional information

 \:\:

  • TSA of solid cylinder = 2πrh + 2πr²

  • LSA of solid cylinder = 2πrh

  • TSA of hollow cylinder = 2π( r1 + r2)( r1 – r2 + h)

  • LSA of hollow cylinder = 2πr1h + 2πr2h

Answered by Ranveerx107
1

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Diameter of solid cylinder = 2 cm

 \:\:

  • Length of hollow cylinder = 16 cm

 \:\:

  • External diameter = 20 cm

 \:\:

  • Thickness = 2.5 mm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Length of a solid cylinder must be taken to recasting hollow cylinder

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the height of solid cylinder be "h"

 \:\:

 \underline{\bold{\texttt{Volume of cylinder :}}}

 \:\:

➠ πr²h

 \:\:

r =  \sf \dfrac { Diameter } { 2 } = \dfrac { 2 } { 2 } = 1

h = height of solid cylinder

 \:\:

➜ π × 1² × h

 \:\:

➜ πh -------- (1)

 \:\:

 \underline{\bold{\texttt{Volume of hollow cylinder :}}}

 \:\:

 \sf \pi H(R_1^2 – R_2^2 ) ----- (2)

 \:\:

 \sf R_1 = Outer radius

 \sf R_2 = Inner radius

H = length of hollow cylinder

 \:\:

Thickness = 2.5 mm = 0.25 cm

 \:\:

Inner radius = 10 - 0.25 = 9.75 =  \sf R_2

Length of hollow cylinder = 16 = H

Outer radius =  \sf \dfrac { 20 } { 2 } = 10 =  \sf R_1

 \:\:

 \underline{\bold{\texttt{Putting these values in (2) }}}

 \:\:

 \sf \pi H(R_1^2 – R_2^2 )

 \:\:

 \sf \pi 16(10^2 – 9.75^2 )

 \:\:

 \sf \pi 16(100 – 95.0625 )

 \:\:

 \sf \pi 16(4.9375) -------- (3)

 \:\:

〚 As solid cylinder is just recaste into hollow cylinder hence volume of solid cylinder will be equal to volume of hollow cylinder 〛

 \:\:

 \underline{\bold{\texttt{Thus , (1) = (3)}}}

 \:\:

➜ π × h = 16 × π × 4.9375

 \:\:

➜ h = 16 × 4.9375

 \:\:

➨ h = 79 cm

 \:\:

  • Hence the height of solid cylinder recasted into hollow cylinder is 79 cm

 \:\:

More information

 \:\:

  • TSA of solid cylinder = 2πrh + 2πr²

  • LSA of solid cylinder = 2πrh

  • TSA of hollow cylinder = 2π( r1 + r2)( r1 – r2 + h)

  • LSA of hollow cylinder = 2πr1h + 2πr2h
Similar questions