5. Write the period, place and place value of the underlined digits according
to the Indian system of numbers.
Number Period
Place
Place value
(a) 72358926
(b) 14258300
(c) 62315492
(d) 22004489
(e) 98754312
Answers
Answer:
Given :
Angles of a quadraliteral are (p + 25)°, 2p°, (2p - 15)° and (p + 20)°
To Find :
The value of largest angle
Solution :
The sum of all four interior angles of a quadraliteral is 360°.
\begin{gathered} \\ : \implies \sf \: (p+25) {}^{ \circ} + 2p {}^{ \circ} + (2p - 15) {}^{ \circ} + (p+20) {}^{ \circ} = {360}^{ \circ} \\ \\ \end{gathered}
:⟹(p+25)
∘
+2p
∘
+(2p−15)
∘
+(p+20)
∘
=360
∘
\begin{gathered} \\ : \implies \sf \: 6p + 30 = {360}^{ \circ} \\ \\ \end{gathered}
:⟹6p+30=360
∘
\begin{gathered} \\ : \implies \sf \: 6p = 360 - 30 \\ \\ \end{gathered}
:⟹6p=360−30
\begin{gathered} \\ : \implies \sf \: 6p = 330 \\ \\ \end{gathered}
:⟹6p=330
\begin{gathered} \\ : \implies \sf \: p = \dfrac{330}{6} \\ \\ \end{gathered}
:⟹p=
6
330
\begin{gathered} \\ : \implies{\underline{\boxed{\pink{\mathfrak{p = 55}}}}} \: \bigstar \\ \\ \end{gathered}
:⟹
p=55
★
Then the values of angles are ,
(p + 25)° = 55 + 25 = 80°
2p° = 55(2) = 110°
(2p - 15)° = 2(55) - 15 = 110 - 15 = 95°
(p + 20)° = 55 + 20 = 75°
Among the given angles of quadrilateral , 110° is largest angle.
Hence ,
The value of largest angle among the given angles of quadrilateral is 110°. So , Option(b) is the required answer