5^x=(0.5)^y=1000 then (y-x)(x+y)
Answers
I think your question is --> 5^x = (0.5)^y = 1000 find (y - x)/(xy)= ?
it is given that , 5^x = (0.5)^y = 1000
now 5^x = 1000 = (10)³
taking log base 10 both sides,
⇒ log10 (5^x) = log10 (10³)
⇒
⇒ [as we know, ]
⇒.....(1)
similarly, (0.5)^y = 1000
⇒ (1/2)^y = 10³
⇒2^-y = 10³
taking log base 10 both sides,
⇒
⇒y=
now, (y-x) =
=
= ....(1)
and xy =
=.....(2)
now, from equations (1) and (2),
(y - x)/xy =
= 1/3
hence, (y - x)/xy = 1/3
it is given that , 5^x = (0.5)^y = 1000
now 5^x = 1000 = (10)³
taking log base 10 both sides,
⇒ log10 (5^x) = log10 (10³)
⇒xlog_{10}5=3log_{10}10xlog
10
5=3log
10
10
⇒xlog_{10}5=3xlog
10
5=3 [as we know, log_{10}10=1log
10
10=1 ]
⇒x=\frac{3}{log_{10}5}x=
log
10
5
3
.....(1)
similarly, (0.5)^y = 1000
⇒ (1/2)^y = 10³
⇒2^-y = 10³
taking log base 10 both sides,
⇒-ylog_{10}2=3−ylog
10
2=3
⇒y=\frac{-3}{log_{10}2}
log
10
2
−3
now, (y-x) = \frac{-3}{log_{10}2}-\frac{3}{log_{10}5}
log
10
2
−3
−
log
10
5
3
= -3\frac{log_{10}2+log_{10}5}{log_{10}5.log_{10}2}=-3\frac{log_{10}2\times5}{log_{10}5.log_{10}2}−3
log
10
5.log
10
2
log
10
2+log
10
5
=−3
log
10
5.log
10
2
log
10
2×5
= \frac{-3}{log_{10}5.log_{10}2}
log
10
5.log
10
2
−3
....(1)
and xy = \frac{3\times-3}{log_{10}5.log_{10}2}
log
10
5.log
10
2
3×−3
=\frac{-9}{log_{10}5.log_{10}2}
log
10
5.log
10
2
−9
.....(2)
now, from equations (1) and (2),
(y - x)/xy = \frac{-3}{-9}
−9
−3
= 1/3
hence, (y - x)/xy = 1/3