Math, asked by yami6724, 3 months ago

5^(x+1) + 5^(2-x) = 5^3 + 1
find x​

Answers

Answered by BrainlyTwinklingstar
1

 \sf 5^{(x+1)} + 5^{(2-x)} = 5^3 + 1

 \sf  {5}^{x}  \times 5 +  {5}^{2}  \times  {5}^{ - x}  = 126

 \sf  {5}^{x}  \times 5 +   \dfrac{25}{ {5}^{x} }   = 126

 \sf substitute \:   {5}^{x}   = y

 \sf  y \times 5 +   \dfrac{25}{y}   = 126

 \sf  5y +   \dfrac{25}{y}   = 126

 \sf   \dfrac{ {5y}^{2}  + 25}{y}   = 126

 \sf   {5y}^{2}  + 25  = 126y

 \sf  5y^{2}  - 126y + 25 = 0

 \sf  5y^{2}  - 125y  - y+ 25 = 0

 \sf  5y(y - 25)  - (y - 25) = 0

 \sf (y - 25)(5y - 1) = 0

 \sf y  =  25 \: or \:  \cfrac{1}{5}

 \sf    {5}^{x}   = y

If y = 25

 \sf    {5}^{x}   = 25

 \sf    {5}^{x}   =  {5}^{2}

 \boxed{ \sf x = 2}

If y = 1/5

 \sf    {5}^{x}   =  \dfrac{1}{5}

 \sf    {5}^{x}   =   {5}^{ - 1}

 \boxed{ \sf x =  - 1}

Hence, x = 2 or -1

Similar questions