Math, asked by charlie256, 1 year ago

5^x=3^y=45^z. then prive that 1/z=1/x+2/y

Answers

Answered by jaggu18
10
your answer for above question
Attachments:
Answered by Thatsomeone
4
Hey user

Here is your answer :-

________________________________

 {5}^{x}  =  {3}^{y}  =  {45}^{z}   \\\ \\  let \:  {5}^{x}  =  {3}^{y}  =  {45}^{z}   = k \\  \\  {5}^{x}  = k \\  \\ taking \: log \: on \: both \: the \: sides \:  \\  \\ x log(5)  =  log(k)  \\  \\  \frac{1}{x}  =  \frac{ log(5) }{ log(k) }  =  log_{k}(5)  \\  \\  \frac{1}{x}  =  log_{k}(5)  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1) \\  \\ similarly \\  \\  {3}^{y}  = k \\  \\ y log(3)  =  log(k)  \\  \\  \frac{1}{y}  =  \frac{ log(3) }{ log(k) }  =  log_{k}(3)  \\  \\  \frac{1}{y}  =  log_{k}(3)  \:  \:  \:  \:  \:  \:  \: ...(2) \\  \\  {45}^{z}  = k \\  \\  zlog(45)  =  log(k)  \\  \\  \frac{1}{z}  =  \frac{ log(45) }{ log(k) }  =  log_{k}(45)  \\  \\  \frac{1}{z}  =  log_{k}(45)  \:  \:  \:  \:  \:  \:  \: ...(3) \\  \\ now \: on \: lhs \:  \\  \\  \frac{1}{z}  =  log_{k}(45) \:  \:  \:  \:  \:  \:  \:  \: ...from \: (3)  \\  \\  =  log_{k}(9 \times 5)  \\  \\  =  log_{k}(9)  +  log_{k}(5)  \\  \\  =  log_{k}( {3}^{2} )  +  log_{k}(5)  \\  \\  = 2 log_{k}(3)  +  log_{k}(5)  \\  \\  = 2( \frac{1}{y} ) +  \frac{1}{x}  \:  \:  \:  \:  \:  \:  \:  \:  \: ...from \: (1) \: and \: (2) \\  \\  =  \frac{1}{x}  +  \frac{2}{y}  \\  \\ hence \: proved

Thank you.
Similar questions