Math, asked by boyt58513, 5 days ago

5^x+5^(x+2)=3250 please help​

Answers

Answered by anindyaadhikari13
2

Solution:

Given Equation:

\rm \longrightarrow {5}^{x} +  {5}^{x + 2}  = 3250

Can be written as:

\rm \longrightarrow {5}^{x} +  {5}^{x} \cdot {5}^{2}   = 3250

\rm \longrightarrow {5}^{x} +  25 \cdot{5}^{x}= 3250

Let us assume that:

\rm \longrightarrow u = {5}^{x}

Therefore, our equation becomes:

\rm \longrightarrow u +  25u= 3250

\rm \longrightarrow 26u= 3250

\rm \longrightarrow u= \dfrac{3250}{26}

\rm \longrightarrow u=125

Substituting back the value of u in the given equation, we get:

\rm \longrightarrow  {5}^{x} =125

\rm \longrightarrow  {5}^{x} =  {5}^{3}

Comparing base, we get:

\rm \longrightarrow x = 3

★ Therefore, the value of x is 3.

Answer:

  • The value of x is 3.

Learn More:

Laws of exponents.

If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions