5/x+y+2/x+-y=-1,15/x+y+7/x+y=10
Answers
Answer:
x=3 and y=2
Step-by-step explanation:
Given Equation:
\dfrac{5}{x+y}-\dfrac{2}{x-y}=-1
x+y
5
−
x−y
2
=−1
\dfrac{15}{x+y}+\dfrac{7}{x-y}=10
x+y
15
+
x−y
7
=10
\dfrac{1}{x+y}=u
x+y
1
=u
\dfrac{1}{x-y}=v
x−y
1
=v
Reducible linear equation
5u-2v=-15u−2v=−1
15u+7v=1015u+7v=10
Using elimination method to solve for u and v
We will make coefficient of u same in both equation. So, we multiply first equation by 3 and we get
15u-6v=-3
15u+7v=10
Subtract (2) - (1)
7v+6v=10+3
13v=13
v=1
Substitute v into 15u+7v=10
15u+7(1)=10[/tex[ [tex]u=\dfrac{1}{5}15u+7(1)=10[/tex[[tex]u=
5
1
\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow x+y=5
x+y
1
=
5
1
⇒x+y=5
\dfrac{1}{x-y}=1\Rightarrow x-y=1
x−y
1
=1⇒x−y=1
Add both equation and eliminate y
2x=6
x=3
Substitute x=3 into x+y=5
3+y=5
y=2
Hence, x=3 and y=2 is solution of system of equation.