Math, asked by shaktidave679mahek, 2 months ago

5\x+y-2\x-y=-1
,15/x+y+7/x-y=10
by cross multiplication

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:\dfrac{5}{x + y}   -  \dfrac{2}{x - y}  =  - 1 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{15}{x + y} +   \dfrac{7}{x - y}  =  10 -  -  - (2)

Let assume that,

\rm :\longmapsto\:\dfrac{1}{x + y} = u -  -  - (3)

and

\rm :\longmapsto\:\dfrac{1}{x  -  y} = v -  -  - (4)

So, equation (1) and (2) can be reduced to

\rm :\longmapsto\:5u - 2v =  - 1

and

\rm :\longmapsto\:15u  + 7v =  10

Now, using crossing multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 2 & \sf  - 1 & \sf 5 & \sf  - 2\\ \\ \sf 7 & \sf 10 & \sf 15 & \sf 7\\ \end{array}} \\ \end{gathered}

\rm :\longmapsto\:\dfrac{u}{ - 20 + 7}  = \dfrac{v}{ - 15 - 50}  = \dfrac{ - 1}{ 35 + 30}

\rm :\longmapsto\:\dfrac{u}{ - 13}  = \dfrac{v}{ - 65}  = \dfrac{1}{ -  65}

\rm :\longmapsto\:\dfrac{u}{1}  = \dfrac{v}{5}  = \dfrac{1}{5}

\bf\implies \:u = \dfrac{1}{5}  \:  \: and \:  \: v = 1

On Substituting the values of u and v in equation (3) and equation (4), we get

\bf\implies \: \dfrac{1}{x + y}  = \dfrac{1}{5}  \:  \: and \:  \:  \dfrac{1}{x - y}  = 1

So, we get

\rm :\longmapsto\:x + y = 5

and

\rm :\longmapsto\:x  -  y = 1

On cross multiplication method, we get

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  1 & \sf  5 & \sf 1 & \sf  1\\ \\ \sf  - 1 & \sf 1 & \sf 1 & \sf  - 1\\ \end{array}} \\ \end{gathered}

\rm :\longmapsto\:\dfrac{x}{ 1 + 5}  = \dfrac{y}{ 5 -1}  = \dfrac{ - 1}{ - 1 - 1}

\rm :\longmapsto\:\dfrac{x}{6}  = \dfrac{y}{4}  = \dfrac{ - 1}{ - 2}

\rm :\longmapsto\:\dfrac{x}{6}  = \dfrac{y}{4}  = \dfrac{1}{2}

\rm :\longmapsto\:\dfrac{x}{3}  = \dfrac{y}{2}  = \dfrac{1}{1}

\bf\implies \:x = 3 \:  \:  \: and \:  \:  \: y = 2

\begin{gathered}\begin{gathered}\bf\: \bf :\longmapsto\:Hence-\begin{cases} &\sf{x = 3} \\ &\sf{y = 2} \end{cases}\end{gathered}\end{gathered}

Similar questions