Math, asked by dj12387, 1 year ago

5/x+y+2/x-y=2and 4/x+y-3/x-y=14 find the solution ​

Answers

Answered by Sharad001
89

Question :-

Given above ↑

Answer :-

 \rightarrow \:  \:  \boxed{ \sf{ x =  \frac{  161}{1054} }} \: \:  \:  \:  \: \boxed{ \sf{y \:  =  \frac{552}{1054} }} \:

Solution :-

Given equations are ↓

 \rightarrow \sf{ \frac{5}{x + y}  +  \frac{2}{x - y}  = 2} \:  \:  \: .......eq.(1) \\  \\  \rightarrow \sf{  \frac{4}{x + y}  -  \frac{3}{x - y}  = 14} \:  \:  \:  \:  ...eq.(2) \\  \\  \implies \: 4 \times \sf{ eq. (1)  - 5 \times \: eq. (2)} \\  \\  \rightarrow \sf{ \frac{8}{x - y}  +  \frac{15}{x - y}  =  - 62} \\  \\  \rightarrow \sf{  \frac{23}{x - y}  =  - 62} \\  \\  \rightarrow  \boxed{\sf{x - y =  -  \frac{23}{62}  \:  \:  \: ......eq.(3)}} \\  \\  \sf{now \: \:  \:  3 \times  \: eq.(1) + 2 \times  \: eq.(2)} \\  \\  \rightarrow \sf{  \frac{15}{x + y}  +  \frac{8}{x + y}  = 6 + 28} \\  \\  \rightarrow \sf{ \frac{23}{x + y}  = 34} \\  \\  \rightarrow \boxed{ \sf{ x + y =  \frac{23}{34}  \:  \:  \: ....eq.(4)}} \\  \\  \sf{now \: adding \: eq.(3) \:  \: and \:  \: eq.(4)} \\  \\  \rightarrow \sf{ 2x =  \frac{23}{34}  -  \frac{23}{62} } \\  \\  \rightarrow \sf{ 2x =  \frac{731 - 391}{1054} } \\  \\  \rightarrow \boxed{ \sf{ x =  \frac{  161}{1054} }} \\  \sf{put \: this \: x \: in \: eq.(3)} \\  \\  \rightarrow \sf{   \frac{161}{1054}  - y =  \frac{ - 23}{62} } \\  \\  \rightarrow \sf{ y \:  =  \frac{23}{62}  + \frac{161}{1054} } \\  \\  \rightarrow \sf{y \:  =  \frac{391 +161}{1054} } \\  \\  \rightarrow \boxed{ \sf{y \:  =  \frac{552}{1054} }}

_______________________________

Similar questions