Math, asked by csgprabhu, 8 months ago

5 years, ago Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as sonu. How old are they ? pls ans fast

Answers

Answered by Anonymous
29

\large\bf\underline \blue {To \:  \mathscr{f}ind:-}

  • ♪ we need to find the present age of nuri and sonu

 \huge\bf\underline \red{ \mathcal{S}olution:-}

 \bf\underline{\purple{Given:-}}

  • 5 years, ago Nuri was thrice as old as Sonu.
  • Ten years later, Nuri will be twice as sonu

  { \blue{ \mathscr{  \underline{Let : -  }}}}

Let present age of sonu be x years.

Let the present age of Nuri be y years.

 \underline{ \large \purple{ \mathscr{\dag\:A \bf{ccourding}  \: to   \: \mathscr {Q} \bf{uestion} ....}}}

5 years ago :-

  • Age of Sonu = x - 5
  • Age of Nuri = y - 5

5 years ,Ago Nuri was thrice as old as Sonu

⟶ y - 5 = 3(x - 5)

⟶ y - 5 = 3x - 15

⟶ y + 10 = 3x

⟶ 3x - y = 10 ....1)

Ten years later, Nuri will be twice as sonu

Ten years later :-

  • Age if sonu = x + 10
  • Age of Nuri = y + 10

⟶ y + 10 = 2(x + 10)

⟶ y + 10 = 2x + 20

⟶ y - 2x = 10 ....2)

  • From equation ...1)

⟶ 3 x - y = 10

⟶ - y = 10 - 3x

⟶ y = 3x - 10 ....3)

  • Substituting value of y in ...2)

⟶ y - 2x = 10

⟶ 3x - 10 - 2x = 10

⟶ x - 10 = 10

⟶ x = 10 + 10

⟶ x = 20

  • Putting value of x in ....3)

⟶ y = 3x - 10

⟶ y = 3 × 20 - 10

⟶ y = 60 - 10

⟶ y = 50

Hence,

  • Age of Sonu x = 20 years.
  • Age of Nuri y = 50 years.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
287

\huge\sf\red{\underline{\underline{Given}}}\::

  • \sf\gray{5 \ years, \ ago \ Nuri \  was \ thrice \ as \ old \ as \ Sonu}
  • \sf\gray{Ten \ years \ later, \ Nuri \  will \ be \ twice \ as \ Sonu.}

\huge\sf\green{\underline{\underline{To\:Find}}}\::

  • \sf\gray{Present \ ages \ of \ Nuri \  and \ Sonu}

\huge\sf\pink{\underline{\underline{Solution}}}\::

{\Large\mathfrak\red{Let}}\begin{cases}\sf\underline\orange{Age \  of \ Nuri \ = \ x \ years} \\\sf\underline\orange{Age \  of \ Sonu \ = \ y \ years}\end{cases}

\star\:\:\sf\underline\red{5 \ years \ ago} \ :

\longrightarrow \:\:\:\sf\purple{(x - 5) = 3(y - 5)}

\longrightarrow \:\:\:\sf\blue{x-5 = 3y - 15}

\longrightarrow \:\:\:\sf\purple{x = 3y - 10.........(1)}

\star\:\:\sf\underline\red{10 \ years \ later} \ :

\longrightarrow \:\:\:\sf\purple{(x+10) = 2(y+10)}

\longrightarrow \:\:\:\sf\blue{x+10 = 2y+20}

\longrightarrow \:\:\:\sf\purple{x-2y = 10..........(2)}

\sf\underline\green{Substitute \ eq ( 1 ) \ in \ eq ( 2 )}

\longrightarrow \:\:\:\sf\purple{(3y -10) - 2y = 10}

\longrightarrow \:\:\:\sf\underline\blue{y \ = \ 20}

\sf\underline\green{Now, \ Substitute \ y \ value \ in \ eq(1)}

\longrightarrow \:\:\:\sf\purple{x = 3y - 10}

\longrightarrow \:\:\:\sf\blue{x = 3 × 20 - 10}

\longrightarrow \:\:\:\sf\underline\purple{x \ = \ 50}

\bf\underline\pink{Hence,}

\begin{cases}\bf\underline\red{Age \  of \ Nuri \ = \ 50 \ years} \\ \bf\underline\orange{Age \  of \ Sonu \ = \ 20 \ years}\end{cases}

Similar questions